Suppr超能文献

利用索赔数据和基于人群的队列数据预测腰痛的医生就诊情况——一种可解释的机器学习方法。

Predicting Physician Consultations for Low Back Pain Using Claims Data and Population-Based Cohort Data-An Interpretable Machine Learning Approach.

机构信息

Department SHIP-KEF, Institute for Community Medicine, Greifswald University Medical Center, Walther Rathenau Str. 48, 17475 Greifswald, Germany.

Department of Family Medicine, Institute for Community Medicine, Fleischmannstr. 42, 17475 Greifswald, Germany.

出版信息

Int J Environ Res Public Health. 2021 Nov 16;18(22):12013. doi: 10.3390/ijerph182212013.

Abstract

(1) Background: Predicting chronic low back pain (LBP) is of clinical and economic interest as LBP leads to disabilities and health service utilization. This study aims to build a competitive and interpretable prediction model; (2) Methods: We used clinical and claims data of 3837 participants of a population-based cohort study to predict future LBP consultations (ICD-10: M40.XX-M54.XX). Best subset selection (BSS) was applied in repeated random samples of training data (75% of data); scoring rules were used to identify the best subset of predictors. The rediction accuracy of BSS was compared to and (SVM) in the validation data (25% of data); (3) Results: The best subset comprised 16 out of 32 predictors. Previous occurrence of LBP increased the odds for future LBP consultations (odds ratio (OR) 6.91 [5.05; 9.45]), while concomitant diseases reduced the odds (1 vs. 0, OR: 0.74 [0.57; 0.98], >1 vs. 0: 0.37 [0.21; 0.67]). The area-under-curve (AUC) of BSS was acceptable (0.78 [0.74; 0.82]) and comparable with (0.78 [0.74; 0.82]) and (0.79 [0.75; 0.83]); (4) Conclusions: Regarding prediction accuracy, BSS has been considered competitive with established machine-learning approaches. Nonetheless, considerable misclassification is inherent and further refinements are required to improve predictions.

摘要

(1) 背景:预测慢性下背痛(LBP)具有临床和经济意义,因为 LBP 会导致残疾和卫生服务利用。本研究旨在建立一个具有竞争力和可解释性的预测模型;(2) 方法:我们使用了一项基于人群的队列研究的 3837 名参与者的临床和索赔数据,以预测未来的 LBP 咨询(ICD-10:M40.XX-M54.XX)。最佳子集选择(BSS)应用于训练数据的重复随机样本(数据的 75%);评分规则用于确定预测器的最佳子集。在验证数据(数据的 25%)中,BSS 的预测准确性与 和 (SVM)进行了比较;(3) 结果:最佳子集由 32 个预测因子中的 16 个组成。既往发生 LBP 会增加未来发生 LBP 咨询的几率(比值比(OR)6.91 [5.05;9.45]),而伴随疾病则降低了几率(1 比 0,OR:0.74 [0.57;0.98],>1 比 0:0.37 [0.21;0.67])。BSS 的曲线下面积(AUC)是可以接受的(0.78 [0.74;0.82]),与 (0.78 [0.74;0.82])和 (0.79 [0.75;0.83])相当;(4) 结论:就预测准确性而言,BSS 已被认为与已建立的机器学习方法具有竞争力。尽管如此,仍存在相当大的分类错误,需要进一步改进以提高预测效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/154c/8622753/5aaa41ba23fe/ijerph-18-12013-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验