Suppr超能文献

双重稳健加性风险模型估计连续暴露对生存的影响。

Doubly Robust Additive Hazards Models to Estimate Effects of a Continuous Exposure on Survival.

机构信息

aDepartment of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA; bDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA; cHarvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA; and dDivision of Rheumatology, Allergy and Immunology, Section of Clinical Sciences, Brigham and Women's Hospital, Boston, MA.

出版信息

Epidemiology. 2017 Nov;28(6):771-779. doi: 10.1097/EDE.0000000000000742.

Abstract

BACKGROUND

The effect of an exposure on survival can be biased when the regression model is misspecified. Hazard difference is easier to use in risk assessment than hazard ratio and has a clearer interpretation in the assessment of effect modifications.

METHODS

We proposed two doubly robust additive hazards models to estimate the causal hazard difference of a continuous exposure on survival. The first model is an inverse probability-weighted additive hazards regression. The second model is an extension of the doubly robust estimator for binary exposures by categorizing the continuous exposure. We compared these with the marginal structural model and outcome regression with correct and incorrect model specifications using simulations. We applied doubly robust additive hazard models to the estimation of hazard difference of long-term exposure to PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 microns) on survival using a large cohort of 13 million older adults residing in seven states of the Southeastern United States.

RESULTS

We showed that the proposed approaches are doubly robust. We found that each 1 μg m increase in annual PM2.5 exposure was associated with a causal hazard difference in mortality of 8.0 × 10 (95% confidence interval 7.4 × 10, 8.7 × 10), which was modified by age, medical history, socioeconomic status, and urbanicity. The overall hazard difference translates to approximately 5.5 (5.1, 6.0) thousand deaths per year in the study population.

CONCLUSIONS

The proposed approaches improve the robustness of the additive hazards model and produce a novel additive causal estimate of PM2.5 on survival and several additive effect modifications, including social inequality.

摘要

背景

当回归模型指定不当时,暴露对生存的影响可能会产生偏差。风险差异比风险比更容易用于风险评估,并且在评估效应修饰时具有更清晰的解释。

方法

我们提出了两种双重稳健加性危害模型来估计连续暴露对生存的因果危害差异。第一个模型是逆概率加权加性危害回归。第二个模型是通过对连续暴露进行分类,扩展了用于二进制暴露的双重稳健估计量。我们使用模拟比较了这些模型与边际结构模型和具有正确和错误模型指定的结果回归。我们应用双重稳健加性危害模型来估计 PM2.5(空气动力学直径小于或等于 2.5 微米的颗粒物)对居住在美国东南部七个州的 1300 万老年人的生存的长期暴露的危害差异。

结果

我们表明所提出的方法是双重稳健的。我们发现,每年 PM2.5 暴露增加 1μg/m 与死亡率的因果危害差异相关,为 8.0×10(95%置信区间为 7.4×10,8.7×10),这与年龄、病史、社会经济地位和城市化有关。总体危害差异转化为研究人群中每年约 5.5(5.1,6.0)千例死亡。

结论

所提出的方法提高了加性危害模型的稳健性,并产生了 PM2.5 对生存和几种加性效应修饰的新的加性因果估计,包括社会不平等。

相似文献

6
Doubly robust estimation of attributable fractions in survival analysis.生存分析中归因分数的双重稳健估计
Stat Methods Med Res. 2017 Apr;26(2):948-969. doi: 10.1177/0962280214564003. Epub 2014 Dec 16.
7
On doubly robust estimation of the hazard difference.关于风险差异的双重稳健估计。
Biometrics. 2019 Mar;75(1):100-109. doi: 10.1111/biom.12943. Epub 2018 Aug 22.

引用本文的文献

本文引用的文献

1
Nonparametric methods for doubly robust estimation of continuous treatment effects.连续治疗效应双重稳健估计的非参数方法。
J R Stat Soc Series B Stat Methodol. 2017 Sep;79(4):1229-1245. doi: 10.1111/rssb.12212. Epub 2016 Sep 30.
2
Air Pollution and Mortality in the Medicare Population.医疗保险人群中的空气污染与死亡率
N Engl J Med. 2017 Jun 29;376(26):2513-2522. doi: 10.1056/NEJMoa1702747.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验