Suppr超能文献

大规模证据生成和评估网络数据库中的 2 型糖尿病(LEGEND-T2DM):一系列跨国真实世界比较心血管有效性和安全性研究的方案。

Large-scale evidence generation and evaluation across a network of databases for type 2 diabetes mellitus (LEGEND-T2DM): a protocol for a series of multinational, real-world comparative cardiovascular effectiveness and safety studies.

机构信息

Section of Cardiovascular Medine, Yale School of Medicine, New Haven, Connecticut, USA.

Center for Outcomes Research and Evaluation, Yale University School of Medicine, New Haven, Connecticut, USA.

出版信息

BMJ Open. 2022 Jun 9;12(6):e057977. doi: 10.1136/bmjopen-2021-057977.

Abstract

INTRODUCTION

Therapeutic options for type 2 diabetes mellitus (T2DM) have expanded over the last decade with the emergence of cardioprotective novel agents, but without such data for older drugs, leaving a critical gap in our understanding of the relative effects of T2DM agents on cardiovascular risk.

METHODS AND ANALYSIS

The large-scale evidence generations across a network of databases for T2DM (LEGEND-T2DM) initiative is a series of systematic, large-scale, multinational, real-world comparative cardiovascular effectiveness and safety studies of all four major second-line anti-hyperglycaemic agents, including sodium-glucose co-transporter-2 inhibitor, glucagon-like peptide-1 receptor agonist, dipeptidyl peptidase-4 inhibitor and sulfonylureas. LEGEND-T2DM will leverage the Observational Health Data Sciences and Informatics (OHDSI) community that provides access to a global network of administrative claims and electronic health record data sources, representing 190 million patients in the USA and about 50 million internationally. LEGEND-T2DM will identify all adult, patients with T2DM who newly initiate a traditionally second-line T2DM agent. Using an active comparator, new-user cohort design, LEGEND-T2DM will execute all pairwise class-versus-class and drug-versus-drug comparisons in each data source, producing extensive study diagnostics that assess reliability and generalisability through cohort balance and equipoise to examine the relative risk of cardiovascular and safety outcomes. The primary cardiovascular outcomes include a composite of major adverse cardiovascular events and a series of safety outcomes. The study will pursue data-driven, large-scale propensity adjustment for measured confounding, a large set of negative control outcome experiments to address unmeasured and systematic bias.

ETHICS AND DISSEMINATION

The study ensures data safety through a federated analytic approach and follows research best practices, including prespecification and full disclosure of results. LEGEND-T2DM is dedicated to open science and transparency and will publicly share all analytic code from reproducible cohort definitions through turn-key software, enabling other research groups to leverage our methods, data and results to verify and extend our findings.

摘要

简介

在过去十年中,随着心脏保护新型药物的出现,2 型糖尿病(T2DM)的治疗选择得到了扩展,但对于较老的药物没有此类数据,这使得我们对 T2DM 药物对心血管风险的相对影响的理解存在重大空白。

方法和分析

LEGEND-T2DM 是一项大型跨数据库的糖尿病治疗方案(LEGEND-T2DM)倡议,旨在对所有四种主要二线抗高血糖药物(钠-葡萄糖共转运蛋白-2 抑制剂、胰高血糖素样肽-1 受体激动剂、二肽基肽酶-4 抑制剂和磺酰脲类药物)进行大规模、多国、真实世界的心血管有效性和安全性比较研究。LEGEND-T2DM 将利用观察性健康数据科学和信息学(OHDSI)社区,该社区提供对全球行政索赔和电子健康记录数据源网络的访问权限,代表美国的 1.9 亿患者和约 5000 万国际患者。LEGEND-T2DM 将识别所有新开始传统二线 T2DM 药物的成年 T2DM 患者。通过使用活性对照物、新用户队列设计,LEGEND-T2DM 将在每个数据源中执行所有类间和药物间的比较,产生广泛的研究诊断,通过队列平衡和均衡来评估可靠性和可推广性,以检查心血管和安全性结果的相对风险。主要心血管结局包括主要不良心血管事件的综合和一系列安全性结局。该研究将通过数据驱动的大规模倾向调整来控制测量混杂,进行大量阴性对照结局实验来解决未测量和系统偏差。

伦理和传播

该研究通过联邦分析方法确保数据安全,并遵循研究最佳实践,包括预先指定和全面披露结果。LEGEND-T2DM 致力于开放科学和透明度,并将公开共享所有可重复的队列定义的分析代码,通过一键式软件,使其他研究小组能够利用我们的方法、数据和结果来验证和扩展我们的发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa59/9185490/cc66bbfab76f/bmjopen-2021-057977f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验