Khatoun Ahmad, Asamoah Boateng, Mc Laughlin Myles
Research Group Experimental ORL, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium.
Research Group Experimental ORL, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
J Neurosci. 2017 Sep 27;37(39):9389-9402. doi: 10.1523/JNEUROSCI.1390-17.2017. Epub 2017 Aug 28.
Transcranial alternating current stimulation (tACS) uses sinusoidal, subthreshold, electric fields to modulate cortical processing. Cortical processing depends on a fine balance between excitation and inhibition and tACS acts on both excitatory and inhibitory cortical neurons. Given this, it is not clear whether tACS should increase or decrease cortical excitability. We investigated this using transcranial current stimulation of the rat (all males) motor cortex consisting of a continuous subthreshold sine wave with short bursts of suprathreshold pulse-trains inserted at different phases to probe cortical excitability. We found that when a low-rate, long-duration, suprathreshold pulse-train was used, subthreshold cathodal tACS decreased cortical excitability and anodal tACS increased excitability. However, when a high-rate, short-duration, suprathreshold pulse-train was used this pattern was inverted. An integrate-and-fire model incorporating biophysical differences between cortical excitatory and inhibitory neurons could predict the experimental data and helped interpret these results. The model indicated that low-rate suprathreshold pulse-trains preferentially stimulate excitatory cortical neurons, whereas high-rate suprathreshold pulse-trains stimulate both excitatory and inhibitory neurons. If correct, this indicates that suprathreshold pulse-train stimulation may be able to selectively control the excitation-inhibition balance within a cortical network. The excitation-inhibition balance then likely plays an important role in determining whether subthreshold tACS will increase or decrease cortical excitability. Transcranial alternating current stimulation (tACS) is a noninvasive neuromodulation method that uses weak sinusoidal electric fields to modulate cortical activity. In healthy volunteers tACS can modulate perception, cognition, and motor function but the underlying neural mechanism is poorly understood. In this study, using rat motor cortex, we found that tACS effects are highly variable: applying the same tACS waveform to the same cortical area does not always give the same change in cortical excitability. An integrate-and-fire model incorporating excitatory pyramidal and inhibitory interneurons indicated that tACS effects likely depend on the cortical excitation-inhibition balance. When cortical activity is excitation dominated one particular tACS phase increases excitability, but when the cortical activity is inhibition dominated the same tACS phase actually decreases excitability.
经颅交流电刺激(tACS)使用正弦、阈下电场来调节皮层处理过程。皮层处理过程取决于兴奋与抑制之间的精细平衡,而tACS作用于兴奋性和抑制性皮层神经元。鉴于此,尚不清楚tACS是应增加还是降低皮层兴奋性。我们通过对大鼠(均为雄性)运动皮层进行经颅电流刺激来研究这一问题,刺激由连续的阈下正弦波组成,并在不同相位插入阈上脉冲串的短脉冲以探测皮层兴奋性。我们发现,当使用低频率、长时间的阈上脉冲串时,阈下阴极tACS会降低皮层兴奋性,而阳极tACS会增加兴奋性。然而,当使用高频率、短时间的阈上脉冲串时,这种模式则相反。一个纳入皮层兴奋性和抑制性神经元生物物理差异的积分发放模型可以预测实验数据,并有助于解释这些结果。该模型表明,低频率阈上脉冲串优先刺激兴奋性皮层神经元,而高频率阈上脉冲串则刺激兴奋性和抑制性神经元。如果这是正确的,这表明阈上脉冲串刺激可能能够选择性地控制皮层网络内的兴奋-抑制平衡。兴奋-抑制平衡可能在决定阈下tACS是增加还是降低皮层兴奋性方面发挥重要作用。经颅交流电刺激(tACS)是一种非侵入性神经调节方法,它使用弱正弦电场来调节皮层活动。在健康志愿者中,tACS可以调节感知、认知和运动功能,但潜在的神经机制尚不清楚。在本研究中,我们使用大鼠运动皮层发现,tACS的效应高度可变:将相同的tACS波形应用于相同的皮层区域并不总是导致皮层兴奋性发生相同的变化。一个纳入兴奋性锥体神经元和抑制性中间神经元的积分发放模型表明,tACS的效应可能取决于皮层的兴奋-抑制平衡。当皮层活动以兴奋为主时,一个特定的tACS相位会增加兴奋性,但当皮层活动以抑制为主时,相同的tACS相位实际上会降低兴奋性。