Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322, United States.
Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States.
J Am Chem Soc. 2017 Sep 27;139(38):13518-13524. doi: 10.1021/jacs.7b07311. Epub 2017 Sep 15.
Nitrogenase catalyzes the reduction of dinitrogen (N) to two ammonia (NH) at its active site FeMo-cofactor through a mechanism involving reductive elimination of two [Fe-H-Fe] bridging hydrides to make H. A competing reaction is the protonation of the hydride [Fe-H-Fe] to make H. The overall nitrogenase rate-limiting step is associated with ATP-driven electron delivery from Fe protein, precluding isotope effect measurements on substrate reduction steps. Here, we use mediated bioelectrocatalysis to drive electron delivery to the MoFe protein allowing examination of the mechanism of H formation by the metal-hydride protonation reaction. The ratio of catalytic current in mixtures of HO and DO, the proton inventory, was found to change linearly with the DO/HO ratio, revealing that a single H/D is involved in the rate-limiting step of H formation. Kinetic models, along with measurements that vary the electron/proton delivery rate and use different substrates, reveal that the rate-limiting step under these conditions is the H formation reaction. Altering the chemical environment around the active site FeMo-cofactor in the MoFe protein, either by substituting nearby amino acids or transferring the isolated FeMo-cofactor into a different peptide matrix, changes the net isotope effect, but the proton inventory plot remains linear, consistent with an unchanging rate-limiting step. Density functional theory predicts a transition state for H formation where the S-H bond breaks and H attacks the Fe-hydride, and explains the observed H/D isotope effect. This study not only reveals the nitrogenase mechanism of H formation by hydride protonation, but also illustrates a strategy for mechanistic study that can be applied to other oxidoreductase enzymes and to biomimetic complexes.
固氮酶在其活性位点 FeMo 辅因子上通过涉及两个 [Fe-H-Fe] 桥接氢化物还原消除形成 H 的机制,将二氮 (N) 还原为两个氨 (NH)。一个竞争反应是 [Fe-H-Fe] 氢化物的质子化以形成 H。固氮酶的整体限速步骤与 Fe 蛋白驱动的电子从 ATP 供体的传递有关,排除了对底物还原步骤的同位素效应测量。在这里,我们使用介导的生物电化学来驱动电子向 MoFe 蛋白传递,从而可以检查通过金属-氢化物质子化反应形成 H 的机制。在 HO 和 DO 的混合物中催化电流的比例,即质子库存,与 DO/HO 比呈线性变化,表明在限速步骤中涉及单个 H/D。动力学模型以及改变电子/质子传递率和使用不同底物的测量结果表明,在这些条件下,限速步骤是 H 的形成反应。通过在 MoFe 蛋白中的活性位点 FeMo 辅因子周围改变化学环境,无论是通过取代附近的氨基酸还是将分离的 FeMo 辅因子转移到不同的肽基质中,都会改变净同位素效应,但质子库存图仍然呈线性,与不变的限速步骤一致。密度泛函理论预测了 H 形成的过渡态,其中 S-H 键断裂,H 攻击 Fe-氢化物,并解释了观察到的 H/D 同位素效应。这项研究不仅揭示了固氮酶通过氢化物质子化形成 H 的机制,而且还说明了一种可应用于其他氧化还原酶和仿生复合物的机制研究策略。