Suppr超能文献

在氮气与固氮酶中铁钼辅因子结合时发生可逆的 H2 损失。

On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase.

机构信息

Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322.

出版信息

Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16327-32. doi: 10.1073/pnas.1315852110. Epub 2013 Sep 23.

Abstract

Nitrogenase is activated for N2 reduction by the accumulation of four electrons/protons on its active site FeMo-cofactor, yielding a state, designated as E4, which contains two iron-bridging hydrides [Fe-H-Fe]. A central puzzle of nitrogenase function is an apparently obligatory formation of one H2 per N2 reduced, which would "waste" two reducing equivalents and four ATP. We recently presented a draft mechanism for nitrogenase that provides an explanation for obligatory H2 production. In this model, H2 is produced by reductive elimination of the two bridging hydrides of E4 during N2 binding. This process releases H2, yielding N2 bound to FeMo-cofactor that is doubly reduced relative to the resting redox level, and thereby is activated to promptly generate bound diazene (HN=NH). This mechanism predicts that during turnover under D2/N2, the reverse reaction of D2 with the N2-bound product of reductive elimination would generate dideutero-E4 [E4(2D)], which can relax with loss of HD to the state designated E2, with a single deuteride bridge [E2(D)]. Neither of these deuterated intermediate states could otherwise form in H2O buffer. The predicted E2(D) and E4(2D) states are here established by intercepting them with the nonphysiological substrate acetylene (C2H2) to generate deuterated ethylenes (C2H3D and C2H2D2). The demonstration that gaseous H2/D2 can reduce a substrate other than H(+) with N2 as a cocatalyst confirms the essential mechanistic role for H2 formation, and hence a limiting stoichiometry for biological nitrogen fixation of eight electrons/protons, and provides direct experimental support for the reductive elimination mechanism.

摘要

固氮酶通过其活性位点 FeMo 辅因子上四个电子/质子的积累而被激活,用于 N2 还原,生成一个被指定为 E4 的状态,其中包含两个铁桥联氢化物 [Fe-H-Fe]。固氮酶功能的一个核心难题是似乎必须形成每还原一个 N2 就产生一个 H2,这将“浪费”两个还原当量和四个 ATP。我们最近提出了一个固氮酶的草案机制,为必需的 H2 产生提供了一个解释。在该模型中,H2 是通过 E4 在 N2 结合过程中两个桥联氢化物的还原消除产生的。这一过程释放 H2,生成与 FeMo 辅因子结合的 N2,与静息氧化还原水平相比,其被双重还原,从而被激活以迅速生成结合的联氨(HN=NH)。该机制预测,在 D2/N2 下的周转过程中,D2 与还原消除的 N2 结合产物的逆反应将生成双氘代 E4 [E4(2D)],其可以通过与 HD 的损失弛豫到指定的 E2 状态,带有单个氘化物桥 [E2(D)]。在 H2O 缓冲液中,否则这些氘代中间态都不能形成。这里通过用非生理底物乙炔(C2H2)拦截它们来建立预测的 E2(D)和 E4(2D)状态,以生成氘代乙烯(C2H3D 和 C2H2D2)。气态 H2/D2 可以将 H(+)以外的底物还原为 N2 作为共催化剂的事实,证实了 H2 形成的关键机制作用,因此限制了生物固氮的电子/质子的计量比为八,并且为还原消除机制提供了直接的实验支持。

相似文献

1
On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16327-32. doi: 10.1073/pnas.1315852110. Epub 2013 Sep 23.
3
Photoinduced Reductive Elimination of H from the Nitrogenase Dihydride (Janus) State Involves a FeMo-cofactor-H Intermediate.
Inorg Chem. 2017 Feb 20;56(4):2233-2240. doi: 10.1021/acs.inorgchem.6b02899. Epub 2017 Feb 8.
4
Nitrogenase: a draft mechanism.
Acc Chem Res. 2013 Feb 19;46(2):587-95. doi: 10.1021/ar300267m. Epub 2013 Jan 4.
5
Mechanism of N Reduction Catalyzed by Fe-Nitrogenase Involves Reductive Elimination of H.
Biochemistry. 2018 Feb 6;57(5):701-710. doi: 10.1021/acs.biochem.7b01142. Epub 2018 Jan 17.
7
Mo-, V-, and Fe-Nitrogenases Use a Universal Eight-Electron Reductive-Elimination Mechanism To Achieve N Reduction.
Biochemistry. 2019 Jul 30;58(30):3293-3301. doi: 10.1021/acs.biochem.9b00468. Epub 2019 Jul 19.
9
Diazene (HN=NH) is a substrate for nitrogenase: insights into the pathway of N2 reduction.
Biochemistry. 2007 Jun 12;46(23):6784-94. doi: 10.1021/bi062294s. Epub 2007 May 18.

引用本文的文献

1
Belt-Sulfur Mobilization as a Crucial Mechanistic Feature Shared between the Vanadium and Molybdenum Nitrogenases.
Chem Catal. 2025 Jul 17;5(7). doi: 10.1016/j.checat.2025.101366. Epub 2025 Apr 28.
2
Nitrogen stable isotope fractionation by biological nitrogen fixation reveals cellular nitrogenase is diffusion limited.
PNAS Nexus. 2025 Feb 25;4(3):pgaf061. doi: 10.1093/pnasnexus/pgaf061. eCollection 2025 Mar.
3
ATP-Independent Turnover of Dinitrogen Intermediates Captured on the Nitrogenase Cofactor.
Angew Chem Int Ed Engl. 2024 May 21;63(21):e202400273. doi: 10.1002/anie.202400273. Epub 2024 Apr 16.
5
Nitrogenase beyond the Resting State: A Structural Perspective.
Molecules. 2023 Dec 5;28(24):7952. doi: 10.3390/molecules28247952.
6
Understanding the Electronic Structure Basis for N Binding to FeMoco: A Systematic Quantum Mechanics/Molecular Mechanics Investigation.
Inorg Chem. 2023 Apr 10;62(14):5357-5375. doi: 10.1021/acs.inorgchem.2c03967. Epub 2023 Mar 29.
7
Dynamic effects on ligand field from rapid hydride motion in an iron(ii) dimer with an = 3 ground state.
Chem Sci. 2023 Feb 8;14(9):2303-2312. doi: 10.1039/d2sc06412j. eCollection 2023 Mar 1.
8
Enzymatic Fischer-Tropsch-Type Reactions.
Chem Rev. 2023 May 10;123(9):5755-5797. doi: 10.1021/acs.chemrev.2c00612. Epub 2022 Dec 21.
9
The HD Reaction of Nitrogenase: a Detailed Mechanism.
Chemistry. 2023 Jan 18;29(4):e202202502. doi: 10.1002/chem.202202502. Epub 2022 Nov 29.
10
Evidence of substrate binding and product release via belt-sulfur mobilization of the nitrogenase cofactor.
Nat Catal. 2022 May;5(5):443-454. doi: 10.1038/s41929-022-00782-7. Epub 2022 May 16.

本文引用的文献

1
Nitrogenase reduction of carbon-containing compounds.
Biochim Biophys Acta. 2013 Aug-Sep;1827(8-9):1102-11. doi: 10.1016/j.bbabio.2013.04.003. Epub 2013 Apr 16.
2
Nitrogenase: a draft mechanism.
Acc Chem Res. 2013 Feb 19;46(2):587-95. doi: 10.1021/ar300267m. Epub 2013 Jan 4.
4
The hydride route to the preparation of dinitrogen complexes.
Chem Commun (Camb). 2010 Feb 21;46(7):1013-25. doi: 10.1039/b922853e. Epub 2010 Jan 11.
7
Connecting nitrogenase intermediates with the kinetic scheme for N2 reduction by a relaxation protocol and identification of the N2 binding state.
Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1451-5. doi: 10.1073/pnas.0610975104. Epub 2007 Jan 24.
9
Substrate interactions with nitrogenase: Fe versus Mo.
Biochemistry. 2004 Feb 17;43(6):1401-9. doi: 10.1021/bi036038g.
10
Hydrogen evolution and exchange, and conversion of N2O to N2 by soybean root nodules.
Biochim Biophys Acta. 1960 Jan 15;37:273-9. doi: 10.1016/0006-3002(60)90234-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验