文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种通过人类肠道微生物预测异源生物/药物分子种属特异性生物转化的新方法。

A novel approach for the prediction of species-specific biotransformation of xenobiotic/drug molecules by the human gut microbiota.

机构信息

Metagenomics and Systems Biology Laboratory, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India.

出版信息

Sci Rep. 2017 Aug 29;7(1):9751. doi: 10.1038/s41598-017-10203-6.


DOI:10.1038/s41598-017-10203-6
PMID:28852076
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5575299/
Abstract

The human gut microbiota is constituted of a diverse group of microbial species harbouring an enormous metabolic potential, which can alter the metabolism of orally administered drugs leading to individual/population-specific differences in drug responses. Considering the large heterogeneous pool of human gut bacteria and their metabolic enzymes, investigation of species-specific contribution to xenobiotic/drug metabolism by experimental studies is a challenging task. Therefore, we have developed a novel computational approach to predict the metabolic enzymes and gut bacterial species, which can potentially carry out the biotransformation of a xenobiotic/drug molecule. A substrate database was constructed for metabolic enzymes from 491 available human gut bacteria. The structural properties (fingerprints) from these substrates were extracted and used for the development of random forest models, which displayed average accuracies of up to 98.61% and 93.25% on cross-validation and blind set, respectively. After the prediction of EC subclass, the specific metabolic enzyme (EC) is identified using a molecular similarity search. The performance was further evaluated on an independent set of FDA-approved drugs and other clinically important molecules. To our knowledge, this is the only available approach implemented as 'DrugBug' tool for the prediction of xenobiotic/drug metabolism by metabolic enzymes of human gut microbiota.

摘要

人类肠道微生物群由一群具有巨大代谢潜力的微生物物种组成,这些微生物可以改变口服药物的代谢,导致个体/人群对药物反应的特异性差异。考虑到人类肠道细菌及其代谢酶的巨大异质池,通过实验研究来研究特定物种对异源/药物代谢的贡献是一项具有挑战性的任务。因此,我们开发了一种新的计算方法来预测可能进行异源/药物分子生物转化的代谢酶和肠道细菌物种。为 491 种可获得的人类肠道细菌中的代谢酶构建了一个底物数据库。从这些底物中提取结构特性(指纹),并用于开发随机森林模型,这些模型在交叉验证和盲集上的平均准确度分别高达 98.61%和 93.25%。在预测 EC 亚类之后,使用分子相似性搜索来识别特定的代谢酶(EC)。还在 FDA 批准的药物和其他临床重要分子的独立数据集上评估了性能。据我们所知,这是唯一可作为“DrugBug”工具使用的方法,用于预测人类肠道微生物群的代谢酶对异源/药物的代谢。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a89f/5575299/2937a21c781f/41598_2017_10203_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a89f/5575299/175be97eb600/41598_2017_10203_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a89f/5575299/f51a34092415/41598_2017_10203_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a89f/5575299/78165c9ec113/41598_2017_10203_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a89f/5575299/2937a21c781f/41598_2017_10203_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a89f/5575299/175be97eb600/41598_2017_10203_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a89f/5575299/f51a34092415/41598_2017_10203_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a89f/5575299/78165c9ec113/41598_2017_10203_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a89f/5575299/2937a21c781f/41598_2017_10203_Fig4_HTML.jpg

相似文献

[1]
A novel approach for the prediction of species-specific biotransformation of xenobiotic/drug molecules by the human gut microbiota.

Sci Rep. 2017-8-29

[2]
GutBug: A Tool for Prediction of Human Gut Bacteria Mediated Biotransformation of Biotic and Xenobiotic Molecules Using Machine Learning.

J Mol Biol. 2023-7-15

[3]
Xenobiotic Metabolism and Gut Microbiomes.

PLoS One. 2016-10-3

[4]
Chemical transformation of xenobiotics by the human gut microbiota.

Science. 2017-6-23

[5]
HGMMX: Host Gut Microbiota Metabolism Xenobiotics Database.

J Chem Inf Model. 2023-11-13

[6]
Human Gut Microbiota and Drug Metabolism.

Microb Ecol. 2023-7

[7]
Computational tools for modeling xenometabolism of the human gut microbiota.

Trends Biotechnol. 2014-2-13

[8]
Gut microbiota in reductive drug metabolism.

Prog Mol Biol Transl Sci. 2020

[9]
Application of artificial intelligence approaches to predict the metabolism of xenobiotic molecules by human gut microbiome.

Front Microbiol. 2023-12-5

[10]
Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism.

BMC Genomics. 2015

引用本文的文献

[1]
Gut-on-a-chip platforms: Bridging in vitro and in vivo models for advanced gastrointestinal research.

Physiol Rep. 2025-5

[2]
XenoBug: machine learning-based tool to predict pollutant-degrading enzymes from environmental metagenomes.

NAR Genom Bioinform. 2025-5-1

[3]
Computational analysis of the gut microbiota-mediated drug metabolism.

Comput Struct Biotechnol J. 2025-3-11

[4]
GutBugDB: a web resource to predict the human gut microbiome-mediated biotransformation of biotic and xenobiotic molecules.

Gut Microbiome (Camb). 2025-1-9

[5]
Gut Microbiota Disruption in Hematologic Cancer Therapy: Molecular Insights and Implications for Treatment Efficacy.

Int J Mol Sci. 2024-9-24

[6]
Bioinformatics Approaches in the Development of Antifungal Therapeutics and Vaccines.

Curr Genomics. 2024

[7]
Gut microbiome-derived hydrolases-an underrated target of natural product metabolism.

Front Cell Infect Microbiol. 2024

[8]
Orally Administered Drugs and Their Complicated Relationship with Our Gastrointestinal Tract.

Microorganisms. 2024-1-24

[9]
Mining the Metabolic Capacity of Clostridium sporogenes Aided by Machine Learning.

Angew Chem Int Ed Engl. 2024-3-18

[10]
Application of artificial intelligence approaches to predict the metabolism of xenobiotic molecules by human gut microbiome.

Front Microbiol. 2023-12-5

本文引用的文献

[1]
The influence of gut microbiota on drug metabolism and toxicity.

Expert Opin Drug Metab Toxicol. 2016

[2]
Identification of High-Impact cis-Regulatory Mutations Using Transcription Factor Specific Random Forest Models.

PLoS Comput Biol. 2015-11-12

[3]
Genetic and environmental control of host-gut microbiota interactions.

Genome Res. 2015-10

[4]
Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?

J Cheminform. 2015-5-20

[5]
Gut Microbiota-Mediated Drug-Antibiotic Interactions.

Drug Metab Dispos. 2015-10

[6]
Woods: A fast and accurate functional annotator and classifier of genomic and metagenomic sequences.

Genomics. 2015-7

[7]
16S classifier: a tool for fast and accurate taxonomic classification of 16S rRNA hypervariable regions in metagenomic datasets.

PLoS One. 2015-2-3

[8]
The influence of negative training set size on machine learning-based virtual screening.

J Cheminform. 2014-6-11

[9]
Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics.

OMICS. 2014-7

[10]
Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics.

Gut Microbes. 2014

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索