Suppr超能文献

肠道菌:一种使用机器学习预测生物和外源分子的人类肠道细菌介导的生物转化的工具。

GutBug: A Tool for Prediction of Human Gut Bacteria Mediated Biotransformation of Biotic and Xenobiotic Molecules Using Machine Learning.

机构信息

Indian Institute of Science Education and Research, Bhopal, India.

Indian Institute of Science Education and Research, Bhopal, India.

出版信息

J Mol Biol. 2023 Jul 15;435(14):168056. doi: 10.1016/j.jmb.2023.168056. Epub 2023 Mar 22.

Abstract

Dietary components and bioactive molecules present in functional foods and nutraceuticals provide various beneficial effects including modulation of host gut microbiome. These metabolites along with orally administered drugs can be potentially bio-transformed by gut microbiome, which can alter their bioavailability and intended biological or pharmacological activity resulting in individual or population-specific variation in drug and dietary responses. Experimental determination of microbiome-mediated metabolism of orally ingested molecules is difficult due to the enormous diversity and complexity of the gut microbiome. To address this problem, we developed "GutBug", a web-based resource that predicts all possible bacterial metabolic enzymes that can potentially biotransform xenobiotics and biotic molecules using a combination of machine learning, neural networks and chemoinformatic methods. Using 3,457 enzyme substrates for training and a curated database of 363,872 enzymes from ∼700 gut bacterial strains, GutBug can predict complete EC number of the bacterial enzymes involved in a biotransformation reaction of the given molecule along with the reaction centres with accuracies between 0.78 and 0.97 across different reaction classes. Validation of GutBug's performance using 27 molecules known to be biotransformed by human gut bacteria, including complex polysaccharides, flavonoids, and oral drugs further attests to GutBug's accuracy and utility. Thus, GutBug enhances our understanding of various metabolite-gut bacterial interactions and their resultant effects on the human host health across populations, which will find enormous applications in diet design and intervention, identification and administration of new prebiotics, development of nutraceutical products, and improvements in drug designing. GutBug is available at https://metabiosys.iiserb.ac.in/gutbug.

摘要

功能性食品和营养保健品中的膳食成分和生物活性分子提供了各种有益的效果,包括调节宿主肠道微生物组。这些代谢物以及口服药物可以被肠道微生物组潜在地生物转化,这可能会改变它们的生物利用度和预期的生物或药理活性,从而导致药物和饮食反应的个体或人群特异性差异。由于肠道微生物组的巨大多样性和复杂性,实验确定口服摄入分子的微生物组介导的代谢是困难的。为了解决这个问题,我们开发了“GutBug”,这是一个基于网络的资源,它使用机器学习、神经网络和化学信息学方法的组合,预测所有可能的细菌代谢酶,这些酶可以潜在地生物转化外来物和生物分子。使用 3457 种酶底物进行训练,并使用来自约 700 种肠道细菌菌株的 363872 种酶的 curated 数据库,GutBug 可以预测给定分子的生物转化反应中涉及的细菌酶的完整 EC 编号,以及反应中心的准确性在不同的反应类别中在 0.78 到 0.97 之间。使用已知被人类肠道细菌生物转化的 27 种分子(包括复杂多糖、类黄酮和口服药物)验证 GutBug 的性能进一步证明了 GutBug 的准确性和实用性。因此,GutBug 增强了我们对各种代谢物-肠道细菌相互作用及其对人群中人类宿主健康的影响的理解,这将在饮食设计和干预、新益生元的识别和管理、营养保健品的开发以及药物设计的改进方面有巨大的应用。GutBug 可在 https://metabiosys.iiserb.ac.in/gutbug 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验