Suppr超能文献

16S分类器:一种用于对宏基因组数据集中16S rRNA高变区进行快速准确分类的工具。

16S classifier: a tool for fast and accurate taxonomic classification of 16S rRNA hypervariable regions in metagenomic datasets.

作者信息

Chaudhary Nikhil, Sharma Ashok K, Agarwal Piyush, Gupta Ankit, Sharma Vineet K

机构信息

MetaInformatics Laboratory, Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, India.

MetaInformatics Laboratory, Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, India; Department of Physics, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh, India.

出版信息

PLoS One. 2015 Feb 3;10(2):e0116106. doi: 10.1371/journal.pone.0116106. eCollection 2015.

Abstract

The diversity of microbial species in a metagenomic study is commonly assessed using 16S rRNA gene sequencing. With the rapid developments in genome sequencing technologies, the focus has shifted towards the sequencing of hypervariable regions of 16S rRNA gene instead of full length gene sequencing. Therefore, 16S Classifier is developed using a machine learning method, Random Forest, for faster and accurate taxonomic classification of short hypervariable regions of 16S rRNA sequence. It displayed precision values of up to 0.91 on training datasets and the precision values of up to 0.98 on the test dataset. On real metagenomic datasets, it showed up to 99.7% accuracy at the phylum level and up to 99.0% accuracy at the genus level. 16S Classifier is available freely at http://metagenomics.iiserb.ac.in/16Sclassifier and http://metabiosys.iiserb.ac.in/16Sclassifier.

摘要

在宏基因组学研究中,微生物物种的多样性通常使用16S rRNA基因测序进行评估。随着基因组测序技术的快速发展,重点已转向16S rRNA基因高变区的测序,而非全长基因测序。因此,开发了16S分类器,它使用机器学习方法随机森林,对16S rRNA序列的短高变区进行更快、更准确的分类。它在训练数据集上的精确值高达0.91,在测试数据集上的精确值高达0.98。在真实的宏基因组数据集上,它在门水平的准确率高达99.7%,在属水平的准确率高达99.0%。16S分类器可在http://metagenomics.iiserb.ac.in/16Sclassifier和http://metabiosys.iiserb.ac.in/16Sclassifier免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dc6/4315456/023d71490e80/pone.0116106.g001.jpg

相似文献

1
16S classifier: a tool for fast and accurate taxonomic classification of 16S rRNA hypervariable regions in metagenomic datasets.
PLoS One. 2015 Feb 3;10(2):e0116106. doi: 10.1371/journal.pone.0116106. eCollection 2015.
2
Deep learning models for bacteria taxonomic classification of metagenomic data.
BMC Bioinformatics. 2018 Jul 9;19(Suppl 7):198. doi: 10.1186/s12859-018-2182-6.
4
Accurate and fast estimation of taxonomic profiles from metagenomic shotgun sequences.
BMC Genomics. 2011;12 Suppl 2(Suppl 2):S4. doi: 10.1186/1471-2164-12-S2-S4. Epub 2011 Jul 27.
6
C16S - a Hidden Markov Model based algorithm for taxonomic classification of 16S rRNA gene sequences.
Genomics. 2012 Apr;99(4):195-201. doi: 10.1016/j.ygeno.2012.01.008. Epub 2012 Feb 3.
7
To compare the performance of prokaryotic taxonomy classifiers using curated 16S full-length rRNA sequences.
Comput Biol Med. 2022 Jun;145:105416. doi: 10.1016/j.compbiomed.2022.105416. Epub 2022 Mar 17.
8
Ultrafast and accurate 16S rRNA microbial community analysis using Kraken 2.
Microbiome. 2020 Aug 28;8(1):124. doi: 10.1186/s40168-020-00900-2.
10
Development of an Analysis Pipeline Characterizing Multiple Hypervariable Regions of 16S rRNA Using Mock Samples.
PLoS One. 2016 Feb 1;11(2):e0148047. doi: 10.1371/journal.pone.0148047. eCollection 2016.

引用本文的文献

4
Research progress in isolation and identification of rumen probiotics.
Front Cell Infect Microbiol. 2024 May 21;14:1411482. doi: 10.3389/fcimb.2024.1411482. eCollection 2024.
5
Metagenomic exploration of Andaman region of the Indian Ocean.
Sci Rep. 2024 Feb 1;14(1):2717. doi: 10.1038/s41598-024-53190-1.
6
Application of artificial intelligence approaches to predict the metabolism of xenobiotic molecules by human gut microbiome.
Front Microbiol. 2023 Dec 5;14:1254073. doi: 10.3389/fmicb.2023.1254073. eCollection 2023.
7
Crohn's Disease Prediction Using Sequence Based Machine Learning Analysis of Human Microbiome.
Diagnostics (Basel). 2023 Sep 1;13(17):2835. doi: 10.3390/diagnostics13172835.

本文引用的文献

1
MP3: a software tool for the prediction of pathogenic proteins in genomic and metagenomic data.
PLoS One. 2014 Apr 15;9(4):e93907. doi: 10.1371/journal.pone.0093907. eCollection 2014.
2
Comparative metagenomic analysis of human gut microbiome composition using two different bioinformatic pipelines.
Biomed Res Int. 2014;2014:325340. doi: 10.1155/2014/325340. Epub 2014 Feb 25.
4
PEAR: a fast and accurate Illumina Paired-End reAd mergeR.
Bioinformatics. 2014 Mar 1;30(5):614-20. doi: 10.1093/bioinformatics/btt593. Epub 2013 Oct 18.
7
OTU analysis using metagenomic shotgun sequencing data.
PLoS One. 2012;7(11):e49785. doi: 10.1371/journal.pone.0049785. Epub 2012 Nov 26.
8
CD-HIT: accelerated for clustering the next-generation sequencing data.
Bioinformatics. 2012 Dec 1;28(23):3150-2. doi: 10.1093/bioinformatics/bts565. Epub 2012 Oct 11.
9
Metagenomics and its connection to microbial community organization.
F1000 Biol Rep. 2012;4:15. doi: 10.3410/B4-15. Epub 2012 Aug 1.
10
Metagenomics - a guide from sampling to data analysis.
Microb Inform Exp. 2012 Feb 9;2(1):3. doi: 10.1186/2042-5783-2-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验