School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
Genome Biol Evol. 2013;5(10):1886-901. doi: 10.1093/gbe/evt141.
Transposable elements (TEs) are a dominant feature of most flowering plant genomes. Together with other accepted facilitators of evolution, accumulating data indicate that TEs can explain much about their rapid evolution and diversification. Genome size in angiosperms is highly correlated with TE content and the overwhelming bulk (>80%) of large genomes can be composed of TEs. Among retro-TEs, long terminal repeats (LTRs) are abundant, whereas DNA-TEs, which are often less abundant than retro-TEs, are more active. Much adaptive or evolutionary potential in angiosperms is due to the activity of TEs (active TE-Thrust), resulting in an extraordinary array of genetic changes, including gene modifications, duplications, altered expression patterns, and exaptation to create novel genes, with occasional gene disruption. TEs implicated in the earliest origins of the angiosperms include the exapted Mustang, Sleeper, and Fhy3/Far1 gene families. Passive TE-Thrust can create a high degree of adaptive or evolutionary potential by engendering ectopic recombination events resulting in deletions, duplications, and karyotypic changes. TE activity can also alter epigenetic patterning, including that governing endosperm development, thus promoting reproductive isolation. Continuing evolution of long-lived resprouter angiosperms, together with genetic variation in their multiple meristems, indicates that TEs can facilitate somatic evolution in addition to germ line evolution. Critical to their success, angiosperms have a high frequency of polyploidy and hybridization, with resultant increased TE activity and introgression, and beneficial gene duplication. Together with traditional explanations, the enhanced genomic plasticity facilitated by TE-Thrust, suggests a more complete and satisfactory explanation for Darwin's "abominable mystery": the spectacular success of the angiosperms.
转座元件 (TEs) 是大多数开花植物基因组的主要特征。随着其他公认的进化促进因素的数据积累,越来越多的证据表明 TEs 可以解释它们快速进化和多样化的原因。被子植物的基因组大小与 TE 含量高度相关,而庞大的基因组 (>80%) 主要由 TEs 组成。在反转录转座子中,长末端重复序列 (LTRs) 非常丰富,而 DNA-TEs 则相对较少,但更活跃。被子植物的大部分适应性或进化潜力归因于 TEs 的活性 (活跃的 TE-Thrust),导致了大量的遗传变化,包括基因修饰、重复、表达模式的改变和外适应以创造新的基因,偶尔也会导致基因中断。在被子植物的早期起源中涉及的转座子包括适应性进化的 Mustang、Sleeper 和 Fhy3/Far1 基因家族。被动的 TE-Thrust 可以通过引发异位重组事件,导致缺失、重复和染色体变化,从而产生高度的适应性或进化潜力。TE 活性还可以改变表观遗传模式,包括调控胚乳发育的模式,从而促进生殖隔离。长寿命营养繁殖植物的持续进化,以及它们多个分生组织的遗传变异,表明 TEs 可以促进体细胞进化,除了生殖细胞进化。关键是被子植物具有高频率的多倍体和杂交,导致 TE 活性和基因渗入增加,以及有益的基因重复。除了传统的解释外,TE-Thrust 增强的基因组可塑性为达尔文的“可恶之谜”提供了一个更完整和令人满意的解释:被子植物的惊人成功。