Malapermal Veshara, Botha Izel, Krishna Suresh Babu Naidu, Mbatha Joyce Nonhlanhla
Department of Biomedical and Clinical Technology, Faculty of Health Science, Durban University of Technology, Durban, South Africa.
Department of Homeopathy, Durban University of Technology, Durban, South Africa.
Saudi J Biol Sci. 2017 Sep;24(6):1294-1305. doi: 10.1016/j.sjbs.2015.06.026. Epub 2015 Jul 4.
The role of silver nanoparticles (AgNps) is an attractive proposition for advancing modern diabetes therapies and applied science. Stable AgNps with a size range of 3-25 nm were synthesized using aqueous leaf extracts from , , and in combination. The concentration of the extracts facilitated the reduction of silver nitrate that led to the rapid formation of AgNps at room temperature, indicating a higher reaction rate as opposed to harsh chemical methods, and high conversion energy usually involved in the synthesis. The size, shape and elemental analysis were carried out using UV-Visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), dynamic light scattering (DLS), and zeta potential whilst, Fourier transform infrared (FTIR) supported by gas chromatography mass spectroscopy (GC-MS) was used to identify the type of capping agents. Inhibition of α-amylase and α-glucosidase enzymes retards the rate of carbohydrate digestion, thereby provides an alternative and a less evasive strategy of reducing postprandial hyperglycaemia in diabetic patients. The AgNps derived from and , respectively displayed an inhibitory effect at 89.31 ± 5.32%, and 79.74 ± 9.51%, respectively, against α-glucosidase enzyme model, indicating an enhanced biocatalytic potential compared to their respective crude extracts and the control. Furthermore, the emerging rate of infections in diabetic patients validates the need for the discovery of dual diabetes therapies. As a result, the bioderived AgNps displayed antimicrobial activity against bacterial species , , , , and species.
银纳米颗粒(AgNps)在推进现代糖尿病治疗和应用科学方面的作用是一个引人关注的命题。使用来自[具体植物名称1]、[具体植物名称2]和[具体植物名称3]的水性叶提取物组合合成了尺寸范围为3 - 25纳米的稳定AgNps。提取物的浓度促进了硝酸银的还原,导致在室温下快速形成AgNps,这表明与苛刻的化学方法相比反应速率更高,且合成过程通常涉及的转化能量较高。使用紫外可见光谱、透射电子显微镜(TEM)、带有能量色散X射线光谱的扫描电子显微镜(SEM - EDX)、动态光散射(DLS)和zeta电位进行尺寸、形状和元素分析,同时使用气相色谱 - 质谱联用(GC - MS)支持的傅里叶变换红外光谱(FTIR)来鉴定封端剂的类型。抑制α - 淀粉酶和α - 葡萄糖苷酶可延缓碳水化合物消化速率,从而为降低糖尿病患者餐后高血糖提供一种替代且侵入性较小的策略。分别源自[具体植物名称1]和[具体植物名称2]的AgNps对α - 葡萄糖苷酶模型分别显示出89.31±5.32%和79.74±9.51%的抑制作用,表明与其各自的粗提物和对照相比具有增强的生物催化潜力。此外,糖尿病患者感染发生率的上升证实了发现双重糖尿病治疗方法的必要性。因此,生物衍生的AgNps对细菌物种[具体细菌名称1]、[具体细菌名称2]、[具体细菌名称3]、[具体细菌名称4]和[具体细菌名称5]显示出抗菌活性。