Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia.
Nanoscale. 2017 Sep 21;9(36):13554-13562. doi: 10.1039/c7nr04598k.
The usability and tunability of the essential InP-InGaAs material combination in nanowire-based quantum wells (QWs) are assessed. The wurtzite phase core-multi-shell InP-InGaAs-InP nanowire QWs are characterised using cross-section transmission electron microscopy and photoluminescence measurements. The InP-InGaAs direct interface is found to be sharp while the InGaAs-InP inverted interface is more diffused, in agreement with their planar counterpart. Bright emission is observed from the single nanowires containing the QWs at room temperature, with no emission from the InP core or outer barrier. The tunability of the QW emission wavelength in the 1.3-1.55 μm communication wavelength range is demonstrated by varying the QW thickness and in the 1.3 μm range by varying the composition. The experiments are supported by simulation of the emission wavelength of the wurtzite phase InP-InGaAs QWs in the thickness range considered. The radial heterostructure is further extended to design multiple QWs with bright emission, therefore establishing the capability of this material system for nanowire based optical devices for communication applications.
评估了基于纳米线的量子阱(QW)中必需的 InP-InGaAs 材料组合的可用性和可调谐性。使用横截面透射电子显微镜和光致发光测量对纤锌矿相核-多壳层 InP-InGaAs-InP 纳米线 QW 进行了表征。发现 InP-InGaAs 直接界面很尖锐,而 InGaAs-InP 反转界面则更扩散,这与它们的平面对应物一致。在室温下,含有 QW 的单根纳米线发出明亮的光,而 InP 核或外部势垒没有发光。通过改变 QW 的厚度,可以在 1.3-1.55 μm 通信波长范围内调谐 QW 发射波长,并且通过改变组成,可以在 1.3 μm 范围内调谐 QW 发射波长。实验得到了考虑的厚度范围内纤锌矿相 InP-InGaAs QW 发射波长的模拟的支持。进一步扩展了径向异质结构以设计具有明亮发射的多个 QW,从而为基于纳米线的通信应用光学器件建立了这种材料系统的能力。