Cavalier-Smith Thomas
Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
Protoplasma. 2018 Jan;255(1):297-357. doi: 10.1007/s00709-017-1147-3. Epub 2017 Sep 5.
In 1981 I established kingdom Chromista, distinguished from Plantae because of its more complex chloroplast-associated membrane topology and rigid tubular multipartite ciliary hairs. Plantae originated by converting a cyanobacterium to chloroplasts with Toc/Tic translocons; most evolved cell walls early, thereby losing phagotrophy. Chromists originated by enslaving a phagocytosed red alga, surrounding plastids by two extra membranes, placing them within the endomembrane system, necessitating novel protein import machineries. Early chromists retained phagotrophy, remaining naked and repeatedly reverted to heterotrophy by losing chloroplasts. Therefore, Chromista include secondary phagoheterotrophs (notably ciliates, many dinoflagellates, Opalozoa, Rhizaria, heliozoans) or walled osmotrophs (Pseudofungi, Labyrinthulea), formerly considered protozoa or fungi respectively, plus endoparasites (e.g. Sporozoa) and all chromophyte algae (other dinoflagellates, chromeroids, ochrophytes, haptophytes, cryptophytes). I discuss their origin, evolutionary diversification, and reasons for making chromists one kingdom despite highly divergent cytoskeletons and trophic modes, including improved explanations for periplastid/chloroplast protein targeting, derlin evolution, and ciliary/cytoskeletal diversification. I conjecture that transit-peptide-receptor-mediated 'endocytosis' from periplastid membranes generates periplastid vesicles that fuse with the arguably derlin-translocon-containing periplastid reticulum (putative red algal trans-Golgi network homologue; present in all chromophytes except dinoflagellates). I explain chromist origin from ancestral corticates and neokaryotes, reappraising tertiary symbiogenesis; a chromist cytoskeletal synapomorphy, a bypassing microtubule band dextral to both centrioles, favoured multiple axopodial origins. I revise chromist higher classification by transferring rhizarian subphylum Endomyxa from Cercozoa to Retaria; establishing retarian subphylum Ectoreta for Foraminifera plus Radiozoa, apicomonad subclasses, new dinozoan classes Myzodinea (grouping Colpovora gen. n., Psammosa), Endodinea, Sulcodinea, and subclass Karlodinia; and ranking heterokont Gyrista as phylum not superphylum.
1981年,我建立了色素界,它与植物界不同,因为其与叶绿体相关的膜拓扑结构更为复杂,且具有刚性管状多部分纤毛。植物界起源于通过Toc/Tic转运体将蓝细菌转化为叶绿体;大多数植物早期进化出细胞壁,从而失去了吞噬营养。色素界起源于捕获一个被吞噬的红藻,通过两层额外的膜包围质体,将它们置于内膜系统中,这就需要新的蛋白质导入机制。早期的色素界生物保留了吞噬营养,保持裸露状态,并通过失去叶绿体多次恢复为异养。因此,色素界包括次生吞噬异养生物(特别是纤毛虫、许多甲藻、扁形动物、根足虫、太阳虫)或有壁渗透营养生物(假真菌、网黏菌),它们以前分别被认为是原生动物或真菌,此外还包括内寄生虫(如孢子虫)和所有色素植物藻类(其他甲藻、色素虫、褐藻、定鞭藻、隐藻)。我讨论了它们的起源、进化多样化,以及尽管细胞骨架和营养模式高度不同,但仍将色素界生物归为一个界的原因,包括对周质体/叶绿体蛋白质靶向、Derlin进化和纤毛/细胞骨架多样化的改进解释。我推测,来自周质体膜的转运肽受体介导的“内吞作用”产生周质体小泡,这些小泡与可能含有Derlin转运体的周质体网状结构(假定的红藻反式高尔基体网络同源物;存在于除甲藻外的所有色素植物中)融合。我解释了色素界从祖先皮质生物和新核生物的起源,重新评估了三级共生起源;一种色素界细胞骨架共源性状,即一条绕过两个中心粒右侧的微管带,有利于多个轴足的起源。我通过将根足虫亚门内黏液纲从Cercozoa转移到Retaria来修订色素界的高级分类;为有孔虫和放射虫、顶复门亚纲、新的甲藻纲Myzodinea(包括新属Colpovora、Psammosa)、Endodinea、Sulcodinea以及亚纲Karlodinia建立Retaria亚门Ectoreta;并将异鞭毛类Gyrista列为门而非超门。