Suppr超能文献

脂质膜上的微粒组装途径。

Microparticle Assembly Pathways on Lipid Membranes.

作者信息

van der Wel Casper, Heinrich Doris, Kraft Daniela J

机构信息

Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, the Netherlands.

Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Leiden, the Netherlands; Fraunhofer Institute for Silicate Research, Würzburg, Germany.

出版信息

Biophys J. 2017 Sep 5;113(5):1037-1046. doi: 10.1016/j.bpj.2017.07.019.

Abstract

Understanding interactions between microparticles and lipid membranes is of increasing importance, especially for unraveling the influence of microplastics on our health and environment. Here, we study how a short-ranged adhesive force between microparticles and model lipid membranes causes membrane-mediated particle assembly. Using confocal microscopy, we observe the initial particle attachment to the membrane, then particle wrapping, and in rare cases spontaneous membrane tubulation. In the attached state, we measure that the particle mobility decreases by 26%. If multiple particles adhere to the same vesicle, their initial single-particle state determines their interactions and subsequent assembly pathways: 1) attached particles only aggregate when small adhesive vesicles are present in solution, 2) wrapped particles reversibly attract one another by membrane deformation, and 3) a combination of wrapped and attached particles form membrane-mediated dimers, which further assemble into a variety of complex structures. The experimental observation of distinct assembly pathways, induced only by a short-ranged membrane-particle adhesion, shows that a cytoskeleton or other active components are not required for microparticle aggregation. We suggest that this membrane-mediated microparticle aggregation is a reason behind reported long retention times of polymer microparticles in organisms.

摘要

了解微粒与脂质膜之间的相互作用变得越来越重要,特别是对于揭示微塑料对我们健康和环境的影响。在此,我们研究微粒与模型脂质膜之间的短程粘附力如何导致膜介导的颗粒组装。使用共聚焦显微镜,我们观察到颗粒最初附着在膜上,然后是颗粒包裹,在极少数情况下会出现自发的膜微管形成。在附着状态下,我们测量到颗粒的迁移率降低了26%。如果多个颗粒附着在同一个囊泡上,它们最初的单颗粒状态决定了它们的相互作用和随后的组装途径:1)只有当溶液中存在小的粘附性囊泡时,附着的颗粒才会聚集;2)包裹的颗粒通过膜变形相互可逆吸引;3)包裹和附着颗粒的组合形成膜介导的二聚体,进而组装成各种复杂结构。仅由短程膜-颗粒粘附诱导的不同组装途径的实验观察表明,微粒聚集不需要细胞骨架或其他活性成分。我们认为这种膜介导的微粒聚集是报道的聚合物微粒在生物体中长时间保留的原因之一。

相似文献

1
Microparticle Assembly Pathways on Lipid Membranes.脂质膜上的微粒组装途径。
Biophys J. 2017 Sep 5;113(5):1037-1046. doi: 10.1016/j.bpj.2017.07.019.
5
Active colloids orbiting giant vesicles.活性胶体环绕巨大囊泡。
Soft Matter. 2021 Apr 28;17(16):4275-4281. doi: 10.1039/d0sm02183k.
10
Curvature-Driven Migration of Colloids on Tense Lipid Bilayers.弯曲驱动的胶体在紧张脂质双层上的迁移。
Langmuir. 2017 Jan 17;33(2):600-610. doi: 10.1021/acs.langmuir.6b03406. Epub 2016 Dec 30.

引用本文的文献

9
Poly(Ionic Liquid) Nanoparticles Selectively Disrupt Biomembranes.聚(离子液体)纳米颗粒选择性破坏生物膜。
Adv Sci (Weinh). 2018 Dec 17;6(4):1801602. doi: 10.1002/advs.201801602. eCollection 2019 Feb 20.
10
Surfactant-free Colloidal Particles with Specific Binding Affinity.具有特定结合亲和力的无表面活性剂胶体颗粒。
Langmuir. 2017 Sep 26;33(38):9803-9810. doi: 10.1021/acs.langmuir.7b02065. Epub 2017 Sep 13.

本文引用的文献

2
Long-range attraction of particles adhered to lipid vesicles.附着于脂质囊泡的粒子的长程吸引作用。
Phys Rev E. 2016 Jul;94(1-1):012604. doi: 10.1103/PhysRevE.94.012604. Epub 2016 Jul 5.
3
A Method for Molecular Dynamics on Curved Surfaces.一种用于曲面上分子动力学的方法。
Biophys J. 2016 Mar 29;110(6):1226-33. doi: 10.1016/j.bpj.2016.02.017.
5
Measuring lipid membrane viscosity using rotational and translational probe diffusion.利用旋转和平移探针扩散测量脂膜粘度。
Phys Rev Lett. 2014 May 9;112(18):188101. doi: 10.1103/PhysRevLett.112.188101. Epub 2014 May 6.
7
Cooperative wrapping of nanoparticles by membrane tubes.膜管对纳米颗粒的协同包裹
Soft Matter. 2014 May 28;10(20):3570-7. doi: 10.1039/c3sm52498a. Epub 2014 Mar 24.
9
Interaction of stable colloidal nanoparticles with cellular membranes.稳定胶体纳米颗粒与细胞膜的相互作用。
Biotechnol Adv. 2014 Jul-Aug;32(4):679-92. doi: 10.1016/j.biotechadv.2013.11.012. Epub 2013 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验