Delannée Victorien, Langouët Sophie, Théret Nathalie, Siegel Anne
UMR 6074 IRISA, CNRS, INRIA, University of Rennes 1, Rennes, France.
UMR Inserm U1085 IRSET, University of Rennes 1, Rennes, France.
PeerJ. 2017 Sep 1;5:e3703. doi: 10.7717/peerj.3703. eCollection 2017.
Heterocyclic aromatic amines (HAA) are environmental and food contaminants that are potentially carcinogenic for humans. 2-Amino-3,8-dimethylimidazo[4,5-]quinoxaline (MeIQx) is one of the most abundant HAA formed in cooked meat. MeIQx is metabolized by cytochrome P450 1A2 in the human liver into detoxificated and bioactivated products. Once bioactivated, MeIQx metabolites can lead to DNA adduct formation responsible for further genome instability.
Using a computational approach, we developed a numerical model for MeIQx metabolism in the liver that predicts the MeIQx biotransformation into detoxification or bioactivation pathways according to the concentration of MeIQx.
Our results demonstrate that (1) the detoxification pathway predominates, (2) the ratio between detoxification and bioactivation pathways is not linear and shows a maximum at 10 µM of MeIQx in hepatocyte cell models, and (3) CYP1A2 is a key enzyme in the system that regulates the balance between bioactivation and detoxification. Our analysis suggests that such a ratio could be considered as an indicator of MeIQx genotoxicity at a low concentration of MeIQx.
Our model permits the investigation of the balance between bioactivation (i.e., DNA adduct formation pathway through the prediction of potential genotoxic compounds) and detoxification of MeIQx in order to predict the behaviour of this environmental contaminant in the human liver. It highlights the importance of complex regulations of enzyme competitions that should be taken into account in any further multi-organ models.
杂环芳香胺(HAA)是环境和食物污染物,对人类具有潜在致癌性。2-氨基-3,8-二甲基咪唑并[4,5-f]喹喔啉(MeIQx)是熟肉中形成的最丰富的HAA之一。MeIQx在人肝脏中由细胞色素P450 1A2代谢为解毒和生物活化产物。一旦被生物活化,MeIQx代谢产物可导致DNA加合物形成,进而导致基因组进一步不稳定。
我们采用计算方法,开发了一种肝脏中MeIQx代谢的数值模型,该模型可根据MeIQx的浓度预测其生物转化为解毒或生物活化途径。
我们的结果表明:(1)解毒途径占主导;(2)在肝细胞模型中,解毒和生物活化途径之间的比例并非线性,在MeIQx浓度为10 μM时达到最大值;(3)CYP1A2是该系统中的关键酶,调节生物活化和解毒之间的平衡。我们的分析表明,在低浓度MeIQx时,该比例可被视为MeIQx遗传毒性的指标。
我们的模型允许研究MeIQx的生物活化(即通过预测潜在的遗传毒性化合物来预测DNA加合物形成途径)和解毒之间的平衡,以便预测这种环境污染物在人肝脏中的行为。它强调了酶竞争复杂调节的重要性,在任何进一步的多器官模型中都应予以考虑。