Suppr超能文献

基于自动机器学习从现场条件下青少年加速度计测量中识别慢跑时段

Automatic machine-learning based identification of jogging periods from accelerometer measurements of adolescents under field conditions.

作者信息

Zdravevski Eftim, Risteska Stojkoska Biljana, Standl Marie, Schulz Holger

机构信息

Faculty of Computer Science and Engineering, Saints Cyril and Methodius University, Skopje, Macedonia.

Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.

出版信息

PLoS One. 2017 Sep 7;12(9):e0184216. doi: 10.1371/journal.pone.0184216. eCollection 2017.

Abstract

BACKGROUND

Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position.

METHODS

The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers.

RESULTS

The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from either accelerometer position.

CONCLUSIONS

Machine learning techniques can be used for automatic activity recognition, as they provide very accurate activity recognition, significantly more accurate than when keeping a diary. Identification of jogging periods in adolescents can be performed using only one accelerometer. Performance-wise there is no significant benefit from using accelerometers on both locations.

摘要

背景

与体育活动相关的健康益处评估取决于活动持续时间、强度和频率,因此在流行病学和临床研究中正确识别这些因素非常有价值且重要。本研究的目的是:开发一种自动识别有意慢跑时段的算法;评估与仅在髋部或踝部使用一个加速度计相比,在髋部和踝部同时使用两个加速度计时识别性能是否有所提高。

方法

本研究使用了来自39名15岁青少年的日记记录的慢跑时段以及相应的加速度计数据,这些数据是在现场条件下收集的,作为GINIplus研究的一部分。数据来自放置在髋部和踝部的两个加速度计。采用自动特征工程技术从原始加速度计读数中提取特征,并选择最重要特征的子集。使用四种机器学习算法进行分类:逻辑回归、支持向量机、随机森林和极端随机树。分类分别使用仅来自髋部加速度计的数据、仅来自踝部加速度计的数据以及来自两个加速度计的数据。

结果

通过目视检查验证报告的慢跑时段,并将其用作黄金标准。在对分类算法进行特征选择和调整后,所有选项的分类准确率至少为0.99,与应用60秒或180秒滑动窗口的分割策略无关。最佳匹配率,即正确识别的慢跑时段长度与包括遗漏时段在内的总时间的比值,高达0.875。通过应用考虑休息和慢跑时段持续时间的分类后规则,该比值可进一步提高至0.967。使用两个加速度计并没有明显优势,几乎从任何一个加速度计位置都能获得相同的性能。

结论

机器学习技术可用于自动活动识别,因为它们能提供非常准确的活动识别,比记日记准确得多。青少年慢跑时段的识别仅使用一个加速度计即可。在性能方面,在两个位置使用加速度计并无显著优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b467/5589162/fe752ed7ff57/pone.0184216.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验