Gomez-Carretero Salvador, Libberton Ben, Rhen Mikael, Richter-Dahlfors Agneta
Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
NPJ Biofilms Microbiomes. 2017 Sep 4;3:19. doi: 10.1038/s41522-017-0027-0. eCollection 2017.
Biofouling is a major problem caused by bacteria colonizing abiotic surfaces, such as medical devices. Biofilms are formed as the bacterial metabolism adapts to an attached growth state. We studied whether bacterial metabolism, hence biofilm formation, can be modulated in electrochemically active surfaces using the conducting conjugated polymer poly(3,4-ethylenedioxythiophene) (PEDOT). We fabricated composites of PEDOT doped with either heparin, dodecyl benzene sulfonate or chloride, and identified the fabrication parameters so that the electrochemical redox state is the main distinct factor influencing biofilm growth. PEDOT surfaces fitted into a custom-designed culturing device allowed for redox switching in cultures, leading to oxidized or reduced electrodes. Similarly large biofilm growth was found on the oxidized anodes and on conventional polyester. In contrast, biofilm was significantly decreased (52-58%) on the reduced cathodes. Quantification of electrochromism in unswitched conducting polymer surfaces revealed a bacteria-driven electrochemical reduction of PEDOT. As a result, unswitched PEDOT acquired an analogous electrochemical state to the externally reduced cathode, explaining the similarly decreased biofilm growth on reduced cathodes and unswitched surfaces. Collectively, our findings reveal two opposing effects affecting biofilm formation. While the oxidized PEDOT anode constitutes a renewable electron sink that promotes biofilm growth, reduction of PEDOT by a power source or by bacteria largely suppresses biofilm formation. Modulating bacterial metabolism using the redox state of electroactive surfaces constitutes an unexplored method with applications spanning from antifouling coatings and microbial fuel cells to the study of the role of bacterial respiration during infection.
生物污垢是由细菌在非生物表面(如医疗设备)上定殖引起的一个主要问题。随着细菌代谢适应附着生长状态,生物膜便形成了。我们研究了细菌代谢以及由此产生的生物膜形成是否可以在使用导电共轭聚合物聚(3,4-亚乙基二氧噻吩)(PEDOT)的电化学活性表面中得到调节。我们制备了掺杂肝素、十二烷基苯磺酸盐或氯化物的PEDOT复合材料,并确定了制备参数,使得电化学氧化还原状态成为影响生物膜生长的主要显著因素。安装在定制培养装置中的PEDOT表面允许在培养物中进行氧化还原切换,从而产生氧化或还原电极。类似地,在氧化阳极和传统聚酯上发现了大量生物膜生长。相比之下,在还原阴极上生物膜显著减少(52 - 58%)。对未切换的导电聚合物表面的电致变色进行定量分析,揭示了细菌驱动的PEDOT电化学还原。结果,未切换的PEDOT获得了与外部还原阴极类似的电化学状态,这解释了在还原阴极和未切换表面上生物膜生长同样减少的原因。总体而言,我们的研究结果揭示了影响生物膜形成的两种相反效应。虽然氧化的PEDOT阳极构成了促进生物膜生长的可再生电子受体,但通过电源或细菌对PEDOT的还原在很大程度上抑制了生物膜的形成。利用电活性表面的氧化还原状态调节细菌代谢构成了一种尚未探索的方法,其应用范围涵盖从防污涂层和微生物燃料电池到感染期间细菌呼吸作用研究等领域。