Suppr超能文献

肽修饰自由基 S-腺苷甲硫氨酸酶 SuiB 的结构阐明了底物识别的基础。

Structures of the peptide-modifying radical SAM enzyme SuiB elucidate the basis of substrate recognition.

机构信息

Department of Chemistry, Princeton University, Princeton, NJ 08544.

Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, NJ 08901.

出版信息

Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10420-10425. doi: 10.1073/pnas.1703663114. Epub 2017 Sep 11.

Abstract

Posttranslational modification of ribosomally synthesized peptides provides an elegant means for the production of biologically active molecules known as RiPPs (ribosomally synthesized and posttranslationally modified peptides). Although the leader sequence of the precursor peptide is often required for turnover, the exact mode of recognition by the modifying enzymes remains unclear for many members of this class of natural products. Here, we have used X-ray crystallography and computational modeling to examine the role of the leader peptide in the biosynthesis of a homolog of streptide, a recently identified peptide natural product with an intramolecular lysine-tryptophan cross-link, which is installed by the radical -adenosylmethionine (SAM) enzyme, StrB. We present crystal structures of SuiB, a close ortholog of StrB, in various forms, including apo SuiB, SAM-bound SuiB, and a complex of SuiB with SAM and its peptide substrate, SuiA. Although the N-terminal domain of SuiB adopts a typical RRE (RiPP recognition element) motif, which has been implicated in precursor peptide recognition, we observe binding of the leader peptide in the catalytic barrel rather than the N-terminal domain. Computational simulations support a mechanism in which the leader peptide guides posttranslational modification by positioning the cross-linking residues of the precursor peptide within the active site. Together the results shed light onto binding of the precursor peptide and the associated conformational changes needed for the formation of the unique carbon-carbon cross-link in the streptide family of natural products.

摘要

核糖体合成肽的翻译后修饰为生物活性分子的产生提供了一种优雅的方式,这些分子被称为 RiPPs(核糖体合成和翻译后修饰肽)。尽管前体肽的前导序列通常是周转所必需的,但对于这类天然产物的许多成员,修饰酶的识别的确切模式仍不清楚。在这里,我们使用 X 射线晶体学和计算建模来研究前导肽在同型 streptide 生物合成中的作用,streptide 是最近发现的具有分子内赖氨酸-色氨酸交联的肽天然产物,由自由基 -腺苷甲硫氨酸(SAM)酶 StrB 安装。我们展示了 SuiB(StrB 的密切同源物)的各种形式的晶体结构,包括 apo SuiB、SAM 结合的 SuiB 以及 SuiB 与 SAM 及其肽底物 SuiA 的复合物。尽管 SuiB 的 N 端结构域采用了典型的 RRE(RiPP 识别元件)基序,该基序与前体肽识别有关,但我们观察到前导肽结合在催化桶中,而不是 N 端结构域。计算模拟支持一种机制,其中前导肽通过将前体肽的交联残基定位在活性位点内来指导翻译后修饰。这些结果揭示了前体肽的结合以及形成 streptide 天然产物家族中独特的碳-碳交联所需的构象变化。

相似文献

引用本文的文献

3
Aromatic side-chain crosslinking in RiPP biosynthesis.核糖体合成的天然肽中芳香族侧链交联
Nat Chem Biol. 2025 Feb;21(2):168-181. doi: 10.1038/s41589-024-01795-y. Epub 2025 Jan 15.
5
Characterization of a Dual Function Peptide Cyclase in Graspetide Biosynthesis.graspetide生物合成中双功能肽环化酶的表征
ACS Chem Biol. 2024 Dec 20;19(12):2525-2534. doi: 10.1021/acschembio.4c00626. Epub 2024 Dec 4.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验