Suppr超能文献

合成稳定的柠檬酸银纳米棒。

Synthesis of Stable Citrate-Capped Silver Nanoprisms.

机构信息

Department of Imaging Physics, UT MD Anderson Cancer Center , 1515 Holcombe Blvd, Houston, Texas 77030, United States.

Department of Biomedical Engineering, University of Texas at Austin , Austin, Texas 78712, United States.

出版信息

Langmuir. 2017 Oct 10;33(40):10525-10530. doi: 10.1021/acs.langmuir.7b01362. Epub 2017 Sep 25.

Abstract

Citrate-stabilized silver nanoprisms (AgNPrs) can be easily functionalized using well-developed thiol based surface chemistry that is an important requirement for biosensor applications utilizing localized surface plasmon resonance (LSPR) and surface-enhanced Raman Scattering (SERS). Unfortunately, currently available protocols for synthesis of citrate-coated AgNPrs do not produce stable nanoparticles thus limiting their usefulness in biosensing applications. Here we address this problem by carrying out a systematic study of citrate-stabilized, peroxide-based synthesis of AgNPrs to optimize reaction conditions for production of stable and reproducible nanoprisms. Our analysis showed that concentration of secondary reducing agent, l-ascorbic acid, is critical to AgNPr stability. Furthermore, we demonstrated that optimization of other synthesis conditions such as stabilizer concentration, rate of silver nitrate addition, and seed dilution result in highly stable nanoprisms with narrow absorbance peaks ranging from 450 nm into near-IR. In addition, the optimized reaction conditions can be used to produce AgNPrs in a one-pot synthesis instead of a previously described two-step reaction. The resulting nanoprisms can readily interact with thiols for easy surface functionalization. These studies provide an optimized set of parameters for precise control of citrate stabilized AgNPr synthesis for biomedical applications.

摘要

柠檬酸钠稳定的银纳米棒(AgNPrs)可以通过成熟的基于巯基的表面化学进行轻松功能化,这是利用局域表面等离子体共振(LSPR)和表面增强拉曼散射(SERS)的生物传感器应用的重要要求。不幸的是,目前用于合成柠檬酸钠包覆的 AgNPrs 的现有方案无法生产稳定的纳米颗粒,从而限制了它们在生物传感应用中的用途。在这里,我们通过进行基于过氧化物的柠檬酸钠稳定的 AgNPrs 的系统研究来解决这个问题,以优化生产稳定且可重复的纳米棒的反应条件。我们的分析表明,二级还原剂 l-抗坏血酸的浓度对 AgNPr 的稳定性至关重要。此外,我们证明了优化其他合成条件,例如稳定剂浓度、硝酸银添加速率和种子稀释,可以得到具有窄吸收峰的高度稳定的纳米棒,吸收峰范围从 450nm 到近红外。此外,优化后的反应条件可用于一锅法合成 AgNPrs,而不是以前描述的两步反应。所得的纳米棒可以很容易地与硫醇相互作用,从而易于进行表面功能化。这些研究为生物医学应用中精确控制柠檬酸钠稳定的 AgNPrs 合成提供了一套优化的参数。

相似文献

1
Synthesis of Stable Citrate-Capped Silver Nanoprisms.
Langmuir. 2017 Oct 10;33(40):10525-10530. doi: 10.1021/acs.langmuir.7b01362. Epub 2017 Sep 25.
2
Core-shell structured lignin-stabilized silver nanoprisms for colorimetric detection of sulfur ions.
Int J Biol Macromol. 2024 Mar;260(Pt 2):129626. doi: 10.1016/j.ijbiomac.2024.129626. Epub 2024 Jan 22.
4
Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods.
Anal Bioanal Chem. 2009 Aug;394(7):1747-60. doi: 10.1007/s00216-009-2762-4. Epub 2009 Apr 22.
7
Light-induced synthesis of silver nanoprisms as a surface-enhanced Raman scattering substrate for N-acetyl procainamide drug quantification.
Spectrochim Acta A Mol Biomol Spectrosc. 2023 Dec 5;302:122996. doi: 10.1016/j.saa.2023.122996. Epub 2023 Jun 10.

引用本文的文献

4
Particle-Driven Effects at the Bacteria Interface: A Nanosilver Investigation of Particle Shape and Dose Metric.
ACS Appl Mater Interfaces. 2023 Aug 23;15(33):39027-39038. doi: 10.1021/acsami.3c00144. Epub 2023 Aug 15.
5
Dimensional Design for Surface-Enhanced Raman Spectroscopy.
ACS Mater Au. 2022 May 10;2(5):552-575. doi: 10.1021/acsmaterialsau.2c00005. eCollection 2022 Sep 14.
7
Recent Advances in Metallic Nanoparticle Assemblies for Surface-Enhanced Spectroscopy.
Int J Mol Sci. 2021 Dec 28;23(1):291. doi: 10.3390/ijms23010291.
8
A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures.
Beilstein J Nanotechnol. 2021 Jan 25;12:102-136. doi: 10.3762/bjnano.12.9. eCollection 2021.
10
Tunable Coffee Ring Formation on Polycarbonate Nanofiber Film for Sensitive SERS Detection of Phenylalanine in Urine.
ACS Omega. 2019 Sep 3;4(12):14928-14936. doi: 10.1021/acsomega.9b01686. eCollection 2019 Sep 17.

本文引用的文献

1
Nano-enabled SERS reporting photosensitizers.
Theranostics. 2015 Feb 6;5(5):469-76. doi: 10.7150/thno.10694. eCollection 2015.
3
Simple synthesis of monodisperse, quasi-spherical, citrate-stabilized silver nanocrystals in water.
Langmuir. 2013 Apr 23;29(16):5074-9. doi: 10.1021/la400214x. Epub 2013 Apr 12.
5
Genetically engineered plasmonic nanoarrays.
Nano Lett. 2012 Apr 11;12(4):2037-44. doi: 10.1021/nl300140g. Epub 2012 Mar 7.
6
H2O2-aided seed-mediated synthesis of silver nanoplates with improved yield and efficiency.
Chemphyschem. 2012 Jul 16;13(10):2526-30. doi: 10.1002/cphc.201101018. Epub 2012 Feb 1.
7
A systematic study of the synthesis of silver nanoplates: is citrate a "magic" reagent?
J Am Chem Soc. 2011 Nov 23;133(46):18931-9. doi: 10.1021/ja2080345. Epub 2011 Oct 31.
8
Seeded growth of uniform Ag nanoplates with high aspect ratio and widely tunable surface plasmon bands.
Nano Lett. 2010 Dec 8;10(12):5037-42. doi: 10.1021/nl1032233. Epub 2010 Nov 1.
9
Controlling the shapes of silver nanocrystals with different capping agents.
J Am Chem Soc. 2010 Jun 30;132(25):8552-3. doi: 10.1021/ja103655f.
10
Mechanistic study of photomediated triangular silver nanoprism growth.
J Am Chem Soc. 2008 Jul 2;130(26):8337-44. doi: 10.1021/ja8005258. Epub 2008 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验