Suppr超能文献

推特作为研究时间行为的一种手段。

Twitter as a means to study temporal behaviour.

作者信息

Roenneberg Till

机构信息

Institute for Medical Psychology, Medical Faculty, LMU, Munich, 80336, Germany.

出版信息

Curr Biol. 2017 Sep 11;27(17):R830-R832. doi: 10.1016/j.cub.2017.08.005.

Abstract

Biomedical research has exploited vital and other statistics (e.g., birth or death rates) for almost 200 years [1]. The Internet has become a rich source of digital databases, which are being used for many lines of research (e.g., circadian and seasonal [2] or metabolism [3,4]). Internet-based studies generally investigate large populations while individual social media accounts are rarely used to analyse, for example, individual sleep-wake behaviour (e.g., youtu.be/wBNcP-LkpfA). I therefore applied time series analyses, commonly used in circadian and sleep research, to approximately 12,000 tweets sent from a single Twitter account (@realdonaldtrump; December, 2014 to March, 2017). The account was clearly used by different individuals/groups launching tweets from various devices. Among these, the Android phone was the most consistent over the years. Its tweet activity peaked twice a day (early morning and late night), and both peaks showed a strong seasonality by tracking dawn.

摘要

近200年来,生物医学研究一直在利用生命统计数据及其他统计数据(如出生率或死亡率)[1]。互联网已成为数字数据库的丰富来源,这些数据库正被用于许多研究领域(如昼夜节律和季节性研究[2]或新陈代谢研究[3,4])。基于互联网的研究通常调查大量人群,而个人社交媒体账户很少用于分析,例如个人的睡眠-觉醒行为(如youtu.be/wBNcP-LkpfA)。因此,我将昼夜节律和睡眠研究中常用的时间序列分析方法应用于从一个推特账户(@realdonaldtrump;2014年12月至2017年3月)发送的约12000条推文。该账户显然被不同的个人/群体使用,他们从各种设备上发布推文。其中,安卓手机多年来最为稳定。其推文活动每天出现两次高峰(清晨和深夜),通过追踪黎明,两个高峰都呈现出强烈的季节性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验