Suppr超能文献

通过街道审计来衡量邻里混乱状况:采用虚拟方式还是实地方式?

Street Audits to Measure Neighborhood Disorder: Virtual or In-Person?

作者信息

Mooney Stephen J, Bader Michael D M, Lovasi Gina S, Teitler Julien O, Koenen Karestan C, Aiello Allison E, Galea Sandro, Goldmann Emily, Sheehan Daniel M, Rundle Andrew G

出版信息

Am J Epidemiol. 2017 Aug 1;186(3):265-273. doi: 10.1093/aje/kwx004.

Abstract

Neighborhood conditions may influence a broad range of health indicators, including obesity, injury, and psychopathology. In particular, neighborhood physical disorder-a measure of urban deterioration-is thought to encourage crime and high-risk behaviors, leading to poor mental and physical health. In studies to assess neighborhood physical disorder, investigators typically rely on time-consuming and expensive in-person systematic neighborhood audits. We compared 2 audit-based measures of neighborhood physical disorder in the city of Detroit, Michigan: One used Google Street View imagery from 2009 and the other used an in-person survey conducted in 2008. Each measure used spatial interpolation to estimate disorder at unobserved locations. In total, the virtual audit required approximately 3% of the time required by the in-person audit. However, the final physical disorder measures were significantly positively correlated at census block centroids (r = 0.52), identified the same regions as highly disordered, and displayed comparable leave-one-out cross-validation accuracy. The measures resulted in very similar convergent validity characteristics (correlation coefficients within 0.03 of each other). The virtual audit-based physical disorder measure could substitute for the in-person one with little to no loss of precision. Virtual audits appear to be a viable and much less expensive alternative to in-person audits for assessing neighborhood conditions.

摘要

邻里环境可能会影响广泛的健康指标,包括肥胖、受伤和精神病理学。特别是,邻里物质失序——一种衡量城市衰败的指标——被认为会助长犯罪和高风险行为,进而导致身心健康状况不佳。在评估邻里物质失序的研究中,研究人员通常依赖耗时且昂贵的亲自进行的系统性邻里审核。我们比较了密歇根州底特律市两种基于审核的邻里物质失序测量方法:一种使用2009年的谷歌街景图像,另一种使用2008年进行的实地调查。每种方法都使用空间插值来估计未观测地点的失序情况。总体而言,虚拟审核所需时间约为实地审核的3%。然而,最终的物质失序测量结果在人口普查街区中心显著正相关(r = 0.52),确定了相同的高度失序区域,并且显示出相当的留一法交叉验证准确性。这些测量方法产生了非常相似的收敛效度特征(相关系数彼此相差在0.03以内)。基于虚拟审核的物质失序测量方法几乎可以在不损失精度的情况下替代实地测量方法。对于评估邻里环境而言,虚拟审核似乎是一种可行且成本低得多的实地审核替代方法。

相似文献

7
Using Google Street View to audit neighborhood environments.利用谷歌街景来审核社区环境。
Am J Prev Med. 2011 Jan;40(1):94-100. doi: 10.1016/j.amepre.2010.09.034.
10

引用本文的文献

3
Lessons Learned from a Citywide Abandoned Housing Experiment.从全市范围的废弃房屋实验中吸取的教训。
J Am Plann Assoc. 2024;90(1):159-172. doi: 10.1080/01944363.2022.2128855. Epub 2023 Feb 3.
9
Examining the Built Environment for Healthy Living via Virtual Street Audits.通过虚拟街道审计审视促进健康生活的建成环境。
Environ Health Insights. 2022 Jun 14;16:11786302221104653. doi: 10.1177/11786302221104653. eCollection 2022.
10
Validating a spatio-temporal model of observed neighborhood physical disorder.验证观察到的邻里物理无序的时空模型。
Spat Spatiotemporal Epidemiol. 2022 Jun;41:100506. doi: 10.1016/j.sste.2022.100506. Epub 2022 Mar 24.

本文引用的文献

9
Assessing the built environment using omnidirectional imagery.使用全景图像评估建筑环境。
Am J Prev Med. 2012 Feb;42(2):193-9. doi: 10.1016/j.amepre.2011.09.029.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验