UMR9199, CNRS, CEA, Paris-Sud Univ., Univ. Paris-Saclay, Fontenay-aux-Roses, France; MIRCen, Institut de biologie François Jacob, DRF, CEA, Fontenay-aux-Roses, France; UNATI, NeuroSpin, Institut des sciences du vivant Frédéric Joliot, DRF, CEA, Univ. Paris-Saclay, Gif-sur-Yvette, France.
UNATI, NeuroSpin, Institut des sciences du vivant Frédéric Joliot, DRF, CEA, Univ. Paris-Saclay, Gif-sur-Yvette, France; CATI Multicenter Neuroimaging Platform, France.
Neuroimage. 2017 Nov 15;162:306-321. doi: 10.1016/j.neuroimage.2017.09.007. Epub 2017 Sep 9.
Because they bridge the genetic gap between rodents and humans, non-human primates (NHPs) play a major role in therapy development and evaluation for neurological disorders. However, translational research success from NHPs to patients requires an accurate phenotyping of the models. In patients, magnetic resonance imaging (MRI) combined with automated segmentation methods has offered the unique opportunity to assess in vivo brain morphological changes. Meanwhile, specific challenges caused by brain size and high field contrasts make existing algorithms hard to use routinely in NHPs. To tackle this issue, we propose a complete pipeline, Primatologist, for multi-region segmentation. Tissue segmentation is based on a modular statistical model that includes random field regularization, bias correction and denoising and is optimized by expectation-maximization. To deal with the broad variety of structures with different relaxing times at 7 T, images are segmented into 17 anatomical classes, including subcortical regions. Pre-processing steps insure a good initialization of the parameters and thus the robustness of the pipeline. It is validated on 10 T2-weighted MRIs of healthy macaque brains. Classification scores are compared with those of a non-linear atlas registration, and the impact of each module on classification scores is thoroughly evaluated.
由于非人灵长类动物(NHPs)在神经疾病的治疗开发和评估中填补了啮齿动物和人类之间的基因空白,因此它们发挥着重要作用。然而,将 NHPs 中的转化研究成果应用于患者,需要对模型进行准确的表型分析。在患者中,磁共振成像(MRI)结合自动分割方法提供了评估活体大脑形态变化的独特机会。同时,由于大脑大小和高场对比度带来的特殊挑战,使得现有的算法难以在 NHPs 中常规使用。为了解决这个问题,我们提出了一个完整的流水线,名为 Primatologist,用于多区域分割。组织分割基于一个模块化的统计模型,包括随机场正则化、偏置校正和去噪,并通过期望最大化进行优化。为了处理在 7T 时具有不同弛豫时间的广泛结构,图像被分割成 17 个解剖学类别,包括皮质下区域。预处理步骤确保了参数的良好初始化,从而提高了流水线的鲁棒性。它在 10 只健康猕猴大脑的 T2 加权 MRI 上进行了验证。分类得分与非线性图谱配准的得分进行了比较,并彻底评估了每个模块对分类得分的影响。