Suppr超能文献

Bianca-MS:用于自动多发性硬化病变分割的优化工具。

BIANCA-MS: An optimized tool for automated multiple sclerosis lesion segmentation.

机构信息

Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.

SIENA Imaging SRL, Siena, Italy.

出版信息

Hum Brain Mapp. 2023 Oct 1;44(14):4893-4913. doi: 10.1002/hbm.26424. Epub 2023 Aug 2.

Abstract

In this work we present BIANCA-MS, a novel tool for brain white matter lesion segmentation in multiple sclerosis (MS), able to generalize across both the wide spectrum of MRI acquisition protocols and the heterogeneity of manually labeled data. BIANCA-MS is based on the original version of BIANCA and implements two innovative elements: a harmonized setting, tested under different MRI protocols, which avoids the need to further tune algorithm parameters to each dataset; and a cleaning step developed to improve consistency in automated and manual segmentations, thus reducing unwanted variability in output segmentations and validation data. BIANCA-MS was tested on three datasets, acquired with different MRI protocols. First, we compared BIANCA-MS to other widely used tools. Second, we tested how BIANCA-MS performs in separate datasets. Finally, we evaluated BIANCA-MS performance on a pooled dataset where all MRI data were merged. We calculated the overlap using the DICE spatial similarity index (SI) as well as the number of false positive/negative clusters (nFPC/nFNC) in comparison to the manual masks processed with the cleaning step. BIANCA-MS clearly outperformed other available tools in both high- and low-resolution images and provided comparable performance across different scanning protocols, sets of modalities and image resolutions. BIANCA-MS performance on the pooled dataset (SI: 0.72 ± 0.25, nFPC: 13 ± 11, nFNC: 4 ± 8) were comparable to those achieved on each individual dataset (median across datasets SI: 0.72 ± 0.28, nFPC: 14 ± 11, nFNC: 4 ± 8). Our findings suggest that BIANCA-MS is a robust and accurate approach for automated MS lesion segmentation.

摘要

在这项工作中,我们提出了 BIANCA-MS,这是一种用于多发性硬化症(MS)脑白质病变分割的新工具,能够跨广泛的 MRI 采集协议和手动标记数据的异质性进行泛化。BIANCA-MS 基于 BIANCA 的原始版本,并实现了两个创新元素:经过不同 MRI 协议测试的协调设置,避免了需要进一步为每个数据集调整算法参数;以及开发的清理步骤,用于提高自动和手动分割的一致性,从而减少输出分割和验证数据中的不必要变异性。BIANCA-MS 在三个使用不同 MRI 协议采集的数据集上进行了测试。首先,我们将 BIANCA-MS 与其他广泛使用的工具进行了比较。其次,我们测试了 BIANCA-MS 在单独数据集上的性能。最后,我们在一个合并了所有 MRI 数据的汇总数据集中评估了 BIANCA-MS 的性能。我们使用 DICE 空间相似性指数(SI)以及与经过清理步骤处理的手动掩模相比的假阳性/阴性簇的数量(nFPC/nFNC)来计算重叠。BIANCA-MS 在高分辨率和低分辨率图像中均明显优于其他可用工具,并在不同的扫描协议、模态集和图像分辨率下提供了可比的性能。BIANCA-MS 在汇总数据集上的性能(SI:0.72±0.25,nFPC:13±11,nFNC:4±8)与在每个单独数据集上的性能相当(数据集之间的中位数 SI:0.72±0.28,nFPC:14±11,nFNC:4±8)。我们的发现表明,BIANCA-MS 是一种用于自动 MS 病变分割的强大而准确的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f832/10472913/a5756019859b/HBM-44-4893-g007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验