a Department of Biochemistry , The University of Western Ontario , London , Canada.
RNA Biol. 2018;15(4-5):614-622. doi: 10.1080/15476286.2017.1372076. Epub 2017 Sep 29.
tRNA guanylyltransferase (Thg1) has unique reverse (3'-5') polymerase activity occurring in all three domains of life. Most eukaryotic Thg1 homologs are essential genes involved in tRNA maturation. These enzymes normally catalyze a single 5' guanylation of tRNA lacking the essential G identity element required for aminoacylation. Recent studies suggest that archaeal type Thg1, which includes most archaeal and bacterial Thg1 enzymes is phylogenetically distant from eukaryotic Thg1. Thg1 is evolutionarily related to canonical 5'-3' forward polymerases but catalyzes reverse 3'-5'polymerization. Similar to its forward polymerase counterparts, Thg1 encodes the conserved catalytic palm domain and fingers domain. Here we investigate the minimal requirements for reverse polymerization. We show that the naturally occurring minimal Thg1 enzyme from Ignicoccus hospitalis (IhThg1), which lacks parts of the conserved fingers domain, is catalytically active. And adds all four natural nucleotides to RNA substrates, we further show that the entire fingers domain of Methanosarcina acetivorans Thg1 and Pyrobaculum aerophilum Thg1 (PaThg1) is dispensable for enzymatic activity. In addition, we identified residues in yeast Thg1 that play a part in preventing extended polymerization. Mutation of these residues with alanine resulted in extended reverse polymerization. PaThg1 was found to catalyze extended, template dependent tRNA repair, adding up to 13 nucleotides to a truncated tRNA substrate. Sequencing results suggest that PaThg1 fully restored the near correct sequence of the D- and acceptor stem, but also produced incompletely and incorrectly repaired tRNA products. This research forms the basis for future engineering efforts towards a high fidelity, template dependent reverse polymerase.
tRNA 鸟苷酰转移酶(Thg1)具有独特的反转(3'→5')聚合酶活性,存在于所有生命的三个领域。大多数真核生物 Thg1 同源物是参与 tRNA 成熟的必需基因。这些酶通常催化缺乏必需的 G 识别元件的 tRNA 的单一 5'鸟苷化,该元件是氨酰化所必需的。最近的研究表明,古菌类型的 Thg1,包括大多数古菌和细菌 Thg1 酶,与真核 Thg1 在系统发育上相距甚远。Thg1 与典型的 5'-3'正向聚合酶进化相关,但催化反转 3'-5'聚合。与正向聚合酶类似,Thg1 编码保守的催化棕榈域和手指域。在这里,我们研究了反转聚合的最小要求。我们表明,来自 Ignicoccus hospitalis 的天然存在的最小 Thg1 酶(IhThg1)缺乏保守的手指域的部分,具有催化活性。并且向 RNA 底物添加所有四个天然核苷酸,我们进一步表明,Methanosarcina acetivorans Thg1 和 Pyrobaculum aerophilum Thg1(PaThg1)的整个手指域对于酶活性是可有可无的。此外,我们鉴定了酵母 Thg1 中在防止延伸聚合中起作用的残基。这些残基的丙氨酸突变导致反转聚合的延伸。发现 PaThg1 可催化延伸的、依赖模板的 tRNA 修复,在截断的 tRNA 底物上添加多达 13 个核苷酸。测序结果表明,PaThg1 完全恢复了 D-和受体茎的近正确序列,但也产生了不完全和不正确修复的 tRNA 产物。这项研究为未来的高保真度、依赖模板的反转聚合酶的工程努力奠定了基础。