Suppr超能文献

tRNA 鸟苷酰转移酶催化反向聚合和 tRNA 修复的最小要求。

Minimal requirements for reverse polymerization and tRNA repair by tRNA guanylyltransferase.

机构信息

a Department of Biochemistry , The University of Western Ontario , London , Canada.

出版信息

RNA Biol. 2018;15(4-5):614-622. doi: 10.1080/15476286.2017.1372076. Epub 2017 Sep 29.

Abstract

tRNA guanylyltransferase (Thg1) has unique reverse (3'-5') polymerase activity occurring in all three domains of life. Most eukaryotic Thg1 homologs are essential genes involved in tRNA maturation. These enzymes normally catalyze a single 5' guanylation of tRNA lacking the essential G identity element required for aminoacylation. Recent studies suggest that archaeal type Thg1, which includes most archaeal and bacterial Thg1 enzymes is phylogenetically distant from eukaryotic Thg1. Thg1 is evolutionarily related to canonical 5'-3' forward polymerases but catalyzes reverse 3'-5'polymerization. Similar to its forward polymerase counterparts, Thg1 encodes the conserved catalytic palm domain and fingers domain. Here we investigate the minimal requirements for reverse polymerization. We show that the naturally occurring minimal Thg1 enzyme from Ignicoccus hospitalis (IhThg1), which lacks parts of the conserved fingers domain, is catalytically active. And adds all four natural nucleotides to RNA substrates, we further show that the entire fingers domain of Methanosarcina acetivorans Thg1 and Pyrobaculum aerophilum Thg1 (PaThg1) is dispensable for enzymatic activity. In addition, we identified residues in yeast Thg1 that play a part in preventing extended polymerization. Mutation of these residues with alanine resulted in extended reverse polymerization. PaThg1 was found to catalyze extended, template dependent tRNA repair, adding up to 13 nucleotides to a truncated tRNA substrate. Sequencing results suggest that PaThg1 fully restored the near correct sequence of the D- and acceptor stem, but also produced incompletely and incorrectly repaired tRNA products. This research forms the basis for future engineering efforts towards a high fidelity, template dependent reverse polymerase.

摘要

tRNA 鸟苷酰转移酶(Thg1)具有独特的反转(3'→5')聚合酶活性,存在于所有生命的三个领域。大多数真核生物 Thg1 同源物是参与 tRNA 成熟的必需基因。这些酶通常催化缺乏必需的 G 识别元件的 tRNA 的单一 5'鸟苷化,该元件是氨酰化所必需的。最近的研究表明,古菌类型的 Thg1,包括大多数古菌和细菌 Thg1 酶,与真核 Thg1 在系统发育上相距甚远。Thg1 与典型的 5'-3'正向聚合酶进化相关,但催化反转 3'-5'聚合。与正向聚合酶类似,Thg1 编码保守的催化棕榈域和手指域。在这里,我们研究了反转聚合的最小要求。我们表明,来自 Ignicoccus hospitalis 的天然存在的最小 Thg1 酶(IhThg1)缺乏保守的手指域的部分,具有催化活性。并且向 RNA 底物添加所有四个天然核苷酸,我们进一步表明,Methanosarcina acetivorans Thg1 和 Pyrobaculum aerophilum Thg1(PaThg1)的整个手指域对于酶活性是可有可无的。此外,我们鉴定了酵母 Thg1 中在防止延伸聚合中起作用的残基。这些残基的丙氨酸突变导致反转聚合的延伸。发现 PaThg1 可催化延伸的、依赖模板的 tRNA 修复,在截断的 tRNA 底物上添加多达 13 个核苷酸。测序结果表明,PaThg1 完全恢复了 D-和受体茎的近正确序列,但也产生了不完全和不正确修复的 tRNA 产物。这项研究为未来的高保真度、依赖模板的反转聚合酶的工程努力奠定了基础。

相似文献

1
Minimal requirements for reverse polymerization and tRNA repair by tRNA guanylyltransferase.
RNA Biol. 2018;15(4-5):614-622. doi: 10.1080/15476286.2017.1372076. Epub 2017 Sep 29.
2
Identification of critical residues for G-1 addition and substrate recognition by tRNA(His) guanylyltransferase.
Biochemistry. 2008 Apr 22;47(16):4817-25. doi: 10.1021/bi702517q. Epub 2008 Mar 27.
3
tRNAHis guanylyltransferase catalyzes a 3'-5' polymerization reaction that is distinct from G-1 addition.
Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8640-5. doi: 10.1073/pnas.0603068103. Epub 2006 May 26.
4
Fidelity of base-pair recognition by a 3'-5' polymerase: mechanism of the tRNA guanylyltransferase.
RNA. 2021 Jun;27(6):683-693. doi: 10.1261/rna.078686.121. Epub 2021 Mar 31.
7
tRNAHis-guanylyltransferase establishes tRNAHis identity.
Nucleic Acids Res. 2012 Jan;40(1):333-44. doi: 10.1093/nar/gkr696. Epub 2011 Sep 2.
9
Template-dependent 3'-5' nucleotide addition is a shared feature of tRNAHis guanylyltransferase enzymes from multiple domains of life.
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):674-9. doi: 10.1073/pnas.0910961107. Epub 2009 Dec 18.
10
Saccharomyces cerevisiae Thg1 uses 5'-pyrophosphate removal to control addition of nucleotides to tRNA(His.).
Biochemistry. 2014 Mar 4;53(8):1380-91. doi: 10.1021/bi4014648. Epub 2014 Feb 18.

引用本文的文献

1
Metal Ion Requirement for Catalysis by 3'-5' RNA Polymerases.
Biochemistry. 2025 Aug 19;64(16):3559-3569. doi: 10.1021/acs.biochem.5c00162. Epub 2025 Aug 7.
2
Metal ion requirement for catalysis by 3'-5' RNA polymerases.
bioRxiv. 2025 Mar 21:2025.03.21.644660. doi: 10.1101/2025.03.21.644660.
4
Thg1 family 3'-5' RNA polymerases as tools for targeted RNA synthesis.
RNA. 2024 Sep 16;30(10):1315-1327. doi: 10.1261/rna.080156.124.
5
The life and times of a tRNA.
RNA. 2023 Jul;29(7):898-957. doi: 10.1261/rna.079620.123. Epub 2023 Apr 13.
6
Towards a Cure for HARS Disease.
Genes (Basel). 2023 Jan 18;14(2):254. doi: 10.3390/genes14020254.
7
Fidelity of base-pair recognition by a 3'-5' polymerase: mechanism of the tRNA guanylyltransferase.
RNA. 2021 Jun;27(6):683-693. doi: 10.1261/rna.078686.121. Epub 2021 Mar 31.
8
Chemical footprinting and kinetic assays reveal dual functions for highly conserved eukaryotic tRNA guanylyltransferase residues.
J Biol Chem. 2019 May 31;294(22):8885-8893. doi: 10.1074/jbc.RA119.007939. Epub 2019 Apr 18.
9
The Role of 3' to 5' Reverse RNA Polymerization in tRNA Fidelity and Repair.
Genes (Basel). 2019 Mar 26;10(3):250. doi: 10.3390/genes10030250.

本文引用的文献

1
Crystal structure of tRNA guanylyltransferase from Saccharomyces cerevisiae.
Biochem Biophys Res Commun. 2017 Aug 19;490(2):400-405. doi: 10.1016/j.bbrc.2017.06.054. Epub 2017 Jun 13.
2
Synthetic biological approaches for RNA labelling and imaging: design principles and future opportunities.
Curr Opin Biotechnol. 2017 Dec;48:153-158. doi: 10.1016/j.copbio.2017.04.003. Epub 2017 May 8.
3
Identification of distinct biological functions for four 3'-5' RNA polymerases.
Nucleic Acids Res. 2016 Sep 30;44(17):8395-406. doi: 10.1093/nar/gkw681. Epub 2016 Aug 2.
4
tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes.
Nucleic Acids Res. 2016 Jul 8;44(W1):W54-7. doi: 10.1093/nar/gkw413. Epub 2016 May 12.
5
Template-dependent nucleotide addition in the reverse (3'-5') direction by Thg1-like protein.
Sci Adv. 2016 Mar 25;2(3):e1501397. doi: 10.1126/sciadv.1501397. eCollection 2016 Mar.
6
Temperature dependent mistranslation in a hyperthermophile adapts proteins to lower temperatures.
Nucleic Acids Res. 2016 Jan 8;44(1):294-303. doi: 10.1093/nar/gkv1379. Epub 2015 Dec 10.
7
In vitro substrate specificities of 3'-5' polymerases correlate with biological outcomes of tRNA 5'-editing reactions.
FEBS Lett. 2015 Jul 22;589(16):2124-30. doi: 10.1016/j.febslet.2015.06.028. Epub 2015 Jul 2.
8
Mitochondrial tRNA 5'-editing in Dictyostelium discoideum and Polysphondylium pallidum.
J Biol Chem. 2014 May 30;289(22):15155-65. doi: 10.1074/jbc.M114.561514. Epub 2014 Apr 15.
9
Saccharomyces cerevisiae Thg1 uses 5'-pyrophosphate removal to control addition of nucleotides to tRNA(His.).
Biochemistry. 2014 Mar 4;53(8):1380-91. doi: 10.1021/bi4014648. Epub 2014 Feb 18.
10
Structural basis of reverse nucleotide polymerization.
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20970-5. doi: 10.1073/pnas.1321312111. Epub 2013 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验