Suppr超能文献

利用单自旋磁力计对非共线反铁磁序的实空间成像。

Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer.

机构信息

Laboratoire Charles Coulomb, Université de Montpellier and CNRS, 34095 Montpellier, France.

Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Cachan, Université Paris-Saclay, 91405 Orsay, France.

出版信息

Nature. 2017 Sep 13;549(7671):252-256. doi: 10.1038/nature23656.

Abstract

Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or may produce emergent spin-orbit effects that enable efficient spin-charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen-vacancy defect in diamond, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen-vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO can be used in the design of reconfigurable nanoscale spin textures.

摘要

尽管铁磁体有许多应用,但它们较大的磁化强度和由此产生的磁矩切换能量成本使得它们不适合用于可靠的低功耗自旋电子器件。非共线反铁磁系统没有这个问题,而且通常具有额外的功能:非共线自旋序可能打破空间反演对称性,从而允许电场控制磁性,或者可能产生新兴的自旋轨道效应,从而实现有效的自旋-电荷转换。为了在下一代自旋电子学中利用这些特性,必须为反铁磁系统开发现在对铁磁体来说常规的纳米级控制和成像能力。在这里,我们使用基于金刚石中氮空位缺陷的非侵入式扫描单自旋磁力计,在室温下演示了对磁性薄膜中非共线反铁磁序的实空间可视化。我们对多铁性的铁酸铋(BiFeO)薄膜的自旋旋进进行成像,并提取出约 70 纳米的周期,与宏观衍射确定的值一致。此外,我们利用 BiFeO 中的磁电耦合,通过电场来控制旋进的传播方向。除了突出氮空位磁力计在纳米尺度上对复杂反铁磁序成像的潜力外,这些结果还展示了 BiFeO 如何用于设计可重构的纳米尺度自旋纹理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验