Suppr超能文献

基于基质基因图谱的两蛋白免疫组化评分预测直肠癌新辅助治疗的病理反应。

Prediction of pathological response to neoadjuvant treatment in rectal cancer with a two-protein immunohistochemical score derived from stromal gene-profiling.

机构信息

Program Against Cancer Therapeutic Resistance.

Program of Prevention and Cancer Control, Biomarkers Unit, Catalan Institute of Oncology.

出版信息

Ann Oncol. 2017 Sep 1;28(9):2160-2168. doi: 10.1093/annonc/mdx293.

Abstract

BACKGROUND

Preoperative chemoradiotherapy followed by surgical mesorectal resection is the standard of care for locally advanced rectal carcinomas. Yet, predicting that patients will respond to treatment remains an unmet clinical challenge.

EXPERIMENTAL DESIGN

Using laser-capture microdissection we isolated RNA from stroma and tumour glands from prospective pre-treatment samples (n = 15). Transcriptomic profiles were obtained hybridising PrimeView Affymetrix arrays. We modelled a carcinoma-associated fibroblast-specific genes filtering data using GSE39396.

RESULTS

The analysis of differentially expressed genes of stroma/tumour glands from responder and non-responder patients shows that most changes were associated with the stromal compartment; codifying mainly for extracellular matrix and ribosomal components. We built a carcinoma-associated fibroblast (CAF) specific classifier with genes showing changes in expression according to the tumour regression grade (FN1, COL3A1, COL1A1, MMP2 and IGFBP5). We assessed these five genes at the protein level by means of immunohistochemical staining in a patient's cohort (n = 38). For predictive purposes we used a leave-one-out cross-validated model with a positive predictive value (PPV) of 83.3%. Random Forest identified FN1 and COL3A1 as the best predictors. Rebuilding the leave-one-out cross-validated regression model improved the classification performance with a PPV of 93.3%. An independent cohort was used for classifier validation (n = 36), achieving a PPV of 88.2%. In a multivariate analysis, the two-protein classifier proved to be the only independent predictor of response.

CONCLUSION

We developed a two-protein immunohistochemical classifier that performs well at predicting the non-response to neoadjuvant treatment in rectal cancer.

摘要

背景

术前放化疗联合直肠系膜切除术是局部进展期直肠癌的标准治疗方法。然而,预测患者对治疗的反应仍然是一个未满足的临床挑战。

实验设计

我们使用激光捕获显微切割技术从前瞻性治疗前样本(n=15)中分离出基质和肿瘤腺体的 RNA。使用 PrimeView Affymetrix 芯片进行转录组谱分析。我们使用 GSE39396 过滤数据,建立了一个与癌相关成纤维细胞特异性基因模型。

结果

对有反应和无反应患者的基质/肿瘤腺差异表达基因的分析表明,大多数变化与基质区室有关;主要编码细胞外基质和核糖体成分。我们构建了一个基于肿瘤回归分级的癌相关成纤维细胞(CAF)特异性分类器,其中包括表达变化的基因(FN1、COL3A1、COL1A1、MMP2 和 IGFBP5)。我们通过免疫组织化学染色在患者队列(n=38)中评估了这五个基因的蛋白水平。为了预测目的,我们使用了一个具有 83.3%阳性预测值(PPV)的留一法交叉验证模型。随机森林鉴定 FN1 和 COL3A1 为最佳预测因子。重建留一法交叉验证回归模型可提高分类性能,PPV 为 93.3%。使用独立队列验证分类器(n=36),获得 88.2%的 PPV。在多变量分析中,双蛋白分类器是预测新辅助治疗无反应的唯一独立预测因子。

结论

我们开发了一种双蛋白免疫组织化学分类器,可很好地预测直肠癌对新辅助治疗的无反应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验