McHugh Kevin J, Nguyen Thanh D, Linehan Allison R, Yang David, Behrens Adam M, Rose Sviatlana, Tochka Zachary L, Tzeng Stephany Y, Norman James J, Anselmo Aaron C, Xu Xian, Tomasic Stephanie, Taylor Matthew A, Lu Jennifer, Guarecuco Rohiverth, Langer Robert, Jaklenec Ana
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Science. 2017 Sep 15;357(6356):1138-1142. doi: 10.1126/science.aaf7447.
Three-dimensional (3D) microstructures created by microfabrication and additive manufacturing have demonstrated value across a number of fields, ranging from biomedicine to microelectronics. However, the techniques used to create these devices each have their own characteristic set of advantages and limitations with regards to resolution, material compatibility, and geometrical constraints that determine the types of microstructures that can be formed. We describe a microfabrication method, termed StampEd Assembly of polymer Layers (SEAL), and create injectable pulsatile drug-delivery microparticles, pH sensors, and 3D microfluidic devices that we could not produce using traditional 3D printing. SEAL allows us to generate microstructures with complex geometry at high resolution, produce fully enclosed internal cavities containing a solid or liquid, and use potentially any thermoplastic material without processing additives.
通过微纳加工和增材制造创建的三维(3D)微结构已在从生物医学到微电子学等多个领域展现出价值。然而,用于制造这些器件的技术在分辨率、材料兼容性和几何约束方面各自具有独特的优缺点,这些因素决定了能够形成的微结构类型。我们描述了一种微纳加工方法,称为聚合物层压印组装(SEAL),并制造出了可注射的脉动给药微粒、pH传感器以及使用传统3D打印无法制造的3D微流控器件。SEAL使我们能够以高分辨率生成具有复杂几何形状的微结构,制造出包含固体或液体的完全封闭的内部腔体,并使用可能的任何热塑性材料而无需加工添加剂。