Suppr超能文献

基于细胞因子的预测模型估计慢性牙周炎概率:诊断列线图的开发。

Cytokine-based Predictive Models to Estimate the Probability of Chronic Periodontitis: Development of Diagnostic Nomograms.

机构信息

Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Galicia, Spain.

Department of Internal Medicine and Clinical Epidemiology, Complejo Hospitalario Universitario, Santiago de Compostela, Galicia, Spain.

出版信息

Sci Rep. 2017 Sep 14;7(1):11580. doi: 10.1038/s41598-017-06674-2.

Abstract

Although a distinct cytokine profile has been described in the gingival crevicular fluid (GCF) of patients with chronic periodontitis, there is no evidence of GCF cytokine-based predictive models being used to diagnose the disease. Our objectives were: to obtain GCF cytokine-based predictive models; and develop nomograms derived from them. A sample of 150 participants was recruited: 75 periodontally healthy controls and 75 subjects affected by chronic periodontitis. Sixteen mediators were measured in GCF using the Luminex 100™ instrument: GMCSF, IFNgamma, IL1alpha, IL1beta, IL2, IL3, IL4, IL5, IL6, IL10, IL12p40, IL12p70, IL13, IL17A, IL17F and TNFalpha. Cytokine-based models were obtained using multivariate binary logistic regression. Models were selected for their ability to predict chronic periodontitis, considering the different role of the cytokines involved in the inflammatory process. The outstanding predictive accuracy of the resulting smoking-adjusted models showed that IL1alpha, IL1beta and IL17A in GCF are very good biomarkers for distinguishing patients with chronic periodontitis from periodontally healthy individuals. The predictive ability of these pro-inflammatory cytokines was increased by incorporating IFN gamma and IL10. The nomograms revealed the amount of periodontitis-associated imbalances between these cytokines with pro-inflammatory and anti-inflammatory effects in terms of a particular probability of having chronic periodontitis.

摘要

虽然慢性牙周炎患者龈沟液(GCF)中存在明显的细胞因子谱,但尚无证据表明基于 GCF 细胞因子的预测模型可用于诊断该疾病。我们的目的是:获得基于 GCF 细胞因子的预测模型;并开发源自它们的列线图。招募了 150 名参与者的样本:75 名牙周健康对照者和 75 名慢性牙周炎患者。使用 Luminex 100™ 仪器测量 GCF 中的 16 种介质:GMCSF、IFNgamma、IL1alpha、IL1beta、IL2、IL3、IL4、IL5、IL6、IL10、IL12p40、IL12p70、IL13、IL17A、IL17F 和 TNFalpha。使用多元二项逻辑回归获得基于细胞因子的模型。考虑到参与炎症过程的细胞因子的不同作用,选择模型以预测慢性牙周炎。由此产生的经吸烟调整的模型具有出色的预测准确性,表明 GCF 中的 IL1alpha、IL1beta 和 IL17A 是区分慢性牙周炎患者和牙周健康个体的非常好的生物标志物。将 IFN gamma 和 IL10 纳入其中,可提高这些促炎细胞因子的预测能力。列线图揭示了这些具有促炎和抗炎作用的细胞因子之间与牙周炎相关的失衡程度,以特定的慢性牙周炎发生概率来表示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/715d/5599565/6a18fa594e7a/41598_2017_6674_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验