Suppr超能文献

放射组学在肺癌中的发展与临床应用。

Development and clinical application of radiomics in lung cancer.

机构信息

Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Xiang, Chengdu, Sichuan, 610041, China.

出版信息

Radiat Oncol. 2017 Sep 15;12(1):154. doi: 10.1186/s13014-017-0885-x.

Abstract

Since the discovery of X-rays at the end of the 19 century, medical imageology has progressed for 100 years, and medical imaging has become an important auxiliary tool for clinical diagnosis. With the launch of the human genome project (HGP) and the development of various high-throughput detection techniques, disease exploration in the post-genome era has extended beyond investigations of structural changes to in-depth analyses of molecular abnormalities in tissues, organs and cells, on the basis of gene expression and epigenetics. These techniques have given rise to genomics, proteomics, metabolomics and other systems biology subspecialties, including radiogenomics. Radiogenomics is an important revolution in the traditional visually identifiable imaging technology and constitutes a new branch, radiomics. Radiomics is aimed at extracting quantitative imaging features automatically and developing models to predict lesion phenotypes in a non-invasive manner. Here, we summarize the advent and development of radiomics, the basic process and challenges in clinical practice, with a focus on applications in pulmonary nodule evaluations, including diagnostics, pathological and molecular classifications, treatment response assessments and prognostic predictions, especially in radiotherapy.

摘要

自 19 世纪末发现 X 射线以来,医学影像学已经发展了 100 年,医学成像已成为临床诊断的重要辅助工具。随着人类基因组计划(HGP)的启动和各种高通量检测技术的发展,后基因组时代的疾病研究已经超越了对结构变化的探索,深入到组织、器官和细胞的分子异常分析,基于基因表达和表观遗传学。这些技术催生了基因组学、蛋白质组学、代谢组学等系统生物学分支,包括放射组学。放射组学是传统视觉可识别成像技术的重要革命,构成了一个新的分支,即放射组学。放射组学旨在自动提取定量成像特征,并开发模型以无创方式预测病变表型。在这里,我们总结了放射组学的出现和发展,以及其在临床实践中的基本过程和挑战,重点介绍了在肺结节评估中的应用,包括诊断、病理和分子分类、治疗反应评估和预后预测,特别是在放射治疗中。

相似文献

3
Radiomics for Response and Outcome Assessment for Non-Small Cell Lung Cancer.非小细胞肺癌反应和结果评估的放射组学
Technol Cancer Res Treat. 2018 Jan 1;17:1533033818782788. doi: 10.1177/1533033818782788.
4
Radiomics: Principles and radiotherapy applications.放射组学:原理与放疗应用。
Crit Rev Oncol Hematol. 2019 Jun;138:44-50. doi: 10.1016/j.critrevonc.2019.03.015. Epub 2019 Mar 29.
6
Radiomics of pulmonary nodules and lung cancer.肺结节与肺癌的影像组学
Transl Lung Cancer Res. 2017 Feb;6(1):86-91. doi: 10.21037/tlcr.2017.01.04.
9
Radiomics: the bridge between medical imaging and personalized medicine.放射组学:医学影像与个性化医疗之间的桥梁。
Nat Rev Clin Oncol. 2017 Dec;14(12):749-762. doi: 10.1038/nrclinonc.2017.141. Epub 2017 Oct 4.

引用本文的文献

3
Advances in imaging modalities for spinal tumors.脊柱肿瘤成像方式的进展。
Neurooncol Adv. 2024 Apr 9;6(Suppl 3):iii13-iii27. doi: 10.1093/noajnl/vdae045. eCollection 2024 Oct.
5
Deep Learning of radiology-genomics integration for computational oncology: A mini review.用于计算肿瘤学的放射基因组学整合深度学习:综述
Comput Struct Biotechnol J. 2024 Jun 20;23:2708-2716. doi: 10.1016/j.csbj.2024.06.019. eCollection 2024 Dec.
7
New developments in the imaging of lung cancer.肺癌成像的新进展。
Breathe (Sheff). 2024 Mar;20(1):230176. doi: 10.1183/20734735.0176-2023. Epub 2024 Apr 9.

本文引用的文献

8
Targeting the cancer epigenome for therapy.针对癌症表观基因组进行治疗。
Nat Rev Genet. 2016 Sep 15;17(10):630-41. doi: 10.1038/nrg.2016.93.
9
Clinical Outcomes of TP53 Mutations in Cancers.癌症中TP53突变的临床结果
Cold Spring Harb Perspect Med. 2016 Sep 1;6(9):a026294. doi: 10.1101/cshperspect.a026294.
10
Predicting Malignant Nodules from Screening CT Scans.通过筛查CT扫描预测恶性结节
J Thorac Oncol. 2016 Dec;11(12):2120-2128. doi: 10.1016/j.jtho.2016.07.002. Epub 2016 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验