Suppr超能文献

肺结节与肺癌的影像组学

Radiomics of pulmonary nodules and lung cancer.

作者信息

Wilson Ryan, Devaraj Anand

机构信息

Royal Brompton Hospital, London, SW3 6NP, UK.

出版信息

Transl Lung Cancer Res. 2017 Feb;6(1):86-91. doi: 10.21037/tlcr.2017.01.04.

Abstract

The large number of indeterminate pulmonary nodules encountered incidentally or during CT-based lung screening provides considerable diagnostic and management challenges. Conventional nodule evaluation relies on visually identifiable discriminators such as size and speculation. These visible nodule features are however small in number and subject to considerable interpretation variability. With the development of novel targeted therapies for lung cancer the diagnosis and characterization of early stage lung tumours has never been more important. Radiomics is a developing field aimed at deriving automated quantitative imaging features from medical images that can predict nodule and tumour behavior non-invasively. In contrast to conventional visual image features radiomics can extract substantially greater numbers of nodule features with much better reproducibility. This paper summarizes the basic process of radiomics and outlines why radiomic feature analysis may be particularly well suited to the evaluation of lung nodules. We review the current evidence for its clinical application with regards to pulmonary nodule management, considering promising applications such as predicting malignancy, histological subtyping, gene expression and post-treatment prognosis. Radiomics has the potential to transform the management of pulmonary nodules offering early diagnosis and personalized medicine using a method that is in cost-effective and non-invasive.

摘要

在偶然情况下或基于CT的肺部筛查过程中发现的大量不确定肺结节,给诊断和管理带来了相当大的挑战。传统的结节评估依赖于视觉上可识别的鉴别因素,如大小和形态。然而,这些可见的结节特征数量较少,且在解读上存在相当大的变异性。随着肺癌新型靶向治疗方法的发展,早期肺癌肿瘤的诊断和特征描述变得前所未有的重要。放射组学是一个正在发展的领域,旨在从医学图像中提取自动定量成像特征,从而能够无创地预测结节和肿瘤的行为。与传统的视觉图像特征不同,放射组学可以提取数量更多、重复性更好的结节特征。本文总结了放射组学的基本过程,并概述了为什么放射组学特征分析可能特别适合于肺结节的评估。我们回顾了其在肺结节管理临床应用方面的当前证据,考虑了诸如预测恶性肿瘤、组织学亚型、基因表达和治疗后预后等有前景的应用。放射组学有潜力改变肺结节的管理方式,通过一种经济有效且无创的方法实现早期诊断和个性化医疗。

相似文献

1
Radiomics of pulmonary nodules and lung cancer.肺结节与肺癌的影像组学
Transl Lung Cancer Res. 2017 Feb;6(1):86-91. doi: 10.21037/tlcr.2017.01.04.
4
Radiomics and artificial intelligence in lung cancer screening.肺癌筛查中的放射组学与人工智能
Transl Lung Cancer Res. 2021 Feb;10(2):1186-1199. doi: 10.21037/tlcr-20-708.

引用本文的文献

本文引用的文献

1
Predicting Malignant Nodules from Screening CT Scans.通过筛查CT扫描预测恶性结节
J Thorac Oncol. 2016 Dec;11(12):2120-2128. doi: 10.1016/j.jtho.2016.07.002. Epub 2016 Jul 13.
6
Radiomics: Images Are More than Pictures, They Are Data.放射组学:图像不止是图片,它们是数据。
Radiology. 2016 Feb;278(2):563-77. doi: 10.1148/radiol.2015151169. Epub 2015 Nov 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验