Suppr超能文献

用于放射图像质量评估的结构相似性指数族

Structural similarity index family for image quality assessment in radiological images.

作者信息

Renieblas Gabriel Prieto, Nogués Agustín Turrero, González Alberto Muñoz, Gómez-Leon Nieves, Del Castillo Eduardo Guibelalde

机构信息

Complutense University, Department of Radiology, Faculty of Medicine, Madrid, Spain.

Complutense University, Department of Statistics and Operations Research, Faculty of Medicine, Madrid, Spain.

出版信息

J Med Imaging (Bellingham). 2017 Jul;4(3):035501. doi: 10.1117/1.JMI.4.3.035501. Epub 2017 Jul 26.

Abstract

The structural similarity index (SSIM) family is a set of metrics that has demonstrated good agreement with human observers in tasks using reference images. These metrics analyze the viewing distance, edge information between the reference and the test images, changed and preserved edges, textures, and structural similarity of the images. Eight metrics based on that family are proposed. This new set of metrics, together with another eight well-known SSIM family metrics, was tested to predict human performance in some specific tasks closely related to the evaluation of radiological medical images. We used a database of radiological images, comprising different acquisition techniques (MRI and plain films). This database was distorted with different types of distortions (Gaussian blur, noise, etc.) and different levels of degradation. These images were analyzed by a board of radiologists with a double-stimulus methodology, and their results were compared with those obtained from the 16 metrics analyzed and proposed in this research. Our experimental results showed that the readings of human observers were sensitive to the changes and preservation of the edge information between the reference and test images, changes and preservation in the texture, structural component of the images, and simulation of multiple viewing distances. These results showed that several metrics that apply this multifactorial approach (4-G-SSIM, 4-MS-G-SSIM, [Formula: see text], and [Formula: see text]) can be used as good surrogates of a radiologist to analyze the medical quality of an image in an environment with a reference image.

摘要

结构相似性指数(SSIM)族是一组在使用参考图像的任务中已证明与人类观察者有良好一致性的度量标准。这些度量标准分析了观看距离、参考图像与测试图像之间的边缘信息、变化和保留的边缘、纹理以及图像的结构相似性。基于该族提出了八个度量标准。这组新的度量标准与另外八个著名的SSIM族度量标准一起,在一些与放射医学图像评估密切相关的特定任务中进行了测试,以预测人类的表现。我们使用了一个放射图像数据库,该数据库包含不同的采集技术(MRI和平片)。这个数据库受到了不同类型的失真(高斯模糊、噪声等)和不同程度的退化影响。这些图像由一组放射科医生采用双刺激方法进行分析,并将他们的结果与本研究中分析和提出的16个度量标准所获得的结果进行比较。我们的实验结果表明,人类观察者的读数对参考图像与测试图像之间边缘信息的变化和保留、纹理的变化和保留、图像的结构成分以及多种观看距离的模拟很敏感。这些结果表明,应用这种多因素方法的几个度量标准(4-G-SSIM、4-MS-G-SSIM、[公式:见原文]和[公式:见原文])可以作为放射科医生在有参考图像的环境中分析图像医学质量的良好替代指标。

相似文献

1
Structural similarity index family for image quality assessment in radiological images.
J Med Imaging (Bellingham). 2017 Jul;4(3):035501. doi: 10.1117/1.JMI.4.3.035501. Epub 2017 Jul 26.
2
Comparison of Objective Image Quality Metrics to Expert Radiologists' Scoring of Diagnostic Quality of MR Images.
IEEE Trans Med Imaging. 2020 Apr;39(4):1064-1072. doi: 10.1109/TMI.2019.2930338. Epub 2019 Sep 16.
3
Structural similarity quality metrics in a coding context: exploring the space of realistic distortions.
IEEE Trans Image Process. 2008 Aug;17(8):1261-73. doi: 10.1109/TIP.2008.926161.
4
An image quality assessment index based on image features and keypoints for X-ray CT images.
PLoS One. 2024 Jul 11;19(7):e0304860. doi: 10.1371/journal.pone.0304860. eCollection 2024.
5
Blind blur assessment of MRI images using parallel multiscale difference of Gaussian filters.
Biomed Eng Online. 2018 Jun 13;17(1):76. doi: 10.1186/s12938-018-0514-4.
6
Structural texture similarity metrics for image analysis and retrieval.
IEEE Trans Image Process. 2013 Jul;22(7):2545-58. doi: 10.1109/TIP.2013.2251645. Epub 2013 Mar 7.
9
Universal blind image quality assessment metrics via natural scene statistics and multiple kernel learning.
IEEE Trans Neural Netw Learn Syst. 2013 Dec;24(12):2013-26. doi: 10.1109/TNNLS.2013.2271356.
10
Integrating Morphological Edge Detection and Mutual Information for Nonrigid Registration of Medical Images.
Curr Med Imaging Rev. 2019;15(3):292-300. doi: 10.2174/1573405614666180103163430.

引用本文的文献

1
The effect of file type and DXA protocol on an image processing fracture risk prediction tool.
Proc Inst Mech Eng H. 2025 Mar;239(3):308-320. doi: 10.1177/09544119251327649. Epub 2025 Apr 16.
3
A super-resolution algorithm to fuse orthogonal CT volumes using OrthoFusion.
Sci Rep. 2025 Jan 9;15(1):1382. doi: 10.1038/s41598-025-85516-y.
4
Advancing dermoscopy through a synthetic hair benchmark dataset and deep learning-based hair removal.
J Biomed Opt. 2024 Nov;29(11):116003. doi: 10.1117/1.JBO.29.11.116003. Epub 2024 Nov 19.
5
Improving Skin Color Diversity in Cancer Detection: Deep Learning Approach.
JMIR Dermatol. 2022 Aug 19;5(3):e39143. doi: 10.2196/39143.
6
Whole-body PET image denoising for reduced acquisition time.
Front Med (Lausanne). 2024 Sep 30;11:1415058. doi: 10.3389/fmed.2024.1415058. eCollection 2024.
7
Reconstructing and analyzing the invariances of low-dose CT image denoising networks.
Med Phys. 2025 Jan;52(1):188-200. doi: 10.1002/mp.17413. Epub 2024 Sep 30.
8
Benchmarking deep learning-based low-dose CT image denoising algorithms.
Med Phys. 2024 Dec;51(12):8776-8788. doi: 10.1002/mp.17379. Epub 2024 Sep 17.
10
Improved Dementia Prediction in Cerebral Small Vessel Disease Using Deep Learning-Derived Diffusion Scalar Maps From T1.
Stroke. 2024 Sep;55(9):2254-2263. doi: 10.1161/STROKEAHA.124.047449. Epub 2024 Aug 15.

本文引用的文献

3
Usability of irreversible image compression in radiological imaging. A position paper by the European Society of Radiology (ESR).
Insights Imaging. 2011 Apr;2(2):103-115. doi: 10.1007/s13244-011-0071-x. Epub 2011 Feb 14.
6
Using a visual discrimination model for the detection of compression artifacts in virtual pathology images.
IEEE Trans Med Imaging. 2011 Feb;30(2):306-14. doi: 10.1109/TMI.2010.2077308. Epub 2010 Sep 23.
7
Complex wavelet structural similarity: a new image similarity index.
IEEE Trans Image Process. 2009 Nov;18(11):2385-401. doi: 10.1109/TIP.2009.2025923. Epub 2009 Jun 23.
8
[Compression of digital images in radiology - results of a consensus conference].
Rofo. 2009 Jan;181(1):32-7. doi: 10.1055/s-2008-1027847. Epub 2008 Dec 29.
9
Structural similarity quality metrics in a coding context: exploring the space of realistic distortions.
IEEE Trans Image Process. 2008 Aug;17(8):1261-73. doi: 10.1109/TIP.2008.926161.
10
Digital radiography image quality: image processing and display.
J Am Coll Radiol. 2007 Jun;4(6):389-400. doi: 10.1016/j.jacr.2007.02.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验