Department of Clinical Neuroscience, Stroke Research Group, University of Cambridge, United Kingdom (Y.C., D.T., R.L., H.S.M.).
Department of Neurology, Radboud University Medical Center, Donders Center for Medical Neurosciences, Nijmegen, the Netherlands (H.L., A.T., F.E.D.L.).
Stroke. 2024 Sep;55(9):2254-2263. doi: 10.1161/STROKEAHA.124.047449. Epub 2024 Aug 15.
Cerebral small vessel disease is the most common pathology underlying vascular dementia. In small vessel disease, diffusion tensor imaging is more sensitive to white matter damage and better predicts dementia risk than conventional magnetic resonance imaging sequences, such as T1 and fluid attenuation inversion recovery, but diffusion tensor imaging takes longer to acquire and is not routinely available in clinical practice. As diffusion tensor imaging-derived scalar maps-fractional anisotropy (FA) and mean diffusivity (MD)-are frequently used in clinical settings, one solution is to synthesize FA/MD from T1 images.
We developed a deep learning model to synthesize FA/MD from T1. The training data set consisted of 4998 participants with the highest white matter hyperintensity volumes in the UK Biobank. Four external validations data sets with small vessel disease were included: SCANS (St George's Cognition and Neuroimaging in Stroke; n=120), RUN DMC (Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Imaging Cohort; n=502), PRESERVE (Blood Pressure in Established Cerebral Small Vessel Disease; n=105), and NETWORKS (n=26), along with 1000 normal controls from the UK Biobank.
The synthetic maps resembled ground-truth maps (structural similarity index >0.89 for MD maps and >0.80 for FA maps across all external validation data sets except for SCANS). The prediction accuracy of dementia using whole-brain median MD from the synthetic maps is comparable to the ground truth (SCANS ground-truth c-index, 0.822 and synthetic, 0.821; RUN DMC ground truth, 0.816 and synthetic, 0.812) and better than white matter hyperintensity volume (SCANS, 0.534; RUN DMC, 0.710).
We have developed a fast and generalizable method to synthesize FA/MD maps from T1 to improve the prediction accuracy of dementia in small vessel disease when diffusion tensor imaging data have not been acquired.
脑小血管病是血管性痴呆最常见的病理基础。在小血管病中,弥散张量成像比传统磁共振成像序列(如 T1 和液体衰减反转恢复)对脑白质损伤更敏感,并且能更好地预测痴呆风险,但弥散张量成像采集时间更长,在临床实践中并不常规使用。由于弥散张量成像衍生的标量图——各向异性分数(FA)和平均弥散度(MD)——在临床中经常使用,一种解决方案是从 T1 图像中合成 FA/MD。
我们开发了一种从 T1 图像中合成 FA/MD 的深度学习模型。训练数据集包含英国生物库中脑白质高信号体积最大的 4998 名参与者。纳入了 4 个具有小血管病的外部验证数据集:SCANS(圣乔治认知和中风神经影像学;n=120)、RUN DMC(拉德堡德大学奈梅亨弥散张量和磁共振成像队列;n=502)、PRESERVE(已建立的脑小血管病中的血压;n=105)和 NETWORKS(n=26),以及来自英国生物库的 1000 名正常对照者。
合成图与真实图相似(除了 SCANS 之外,所有外部验证数据集的 MD 图的结构相似指数>0.89,FA 图>0.80)。使用合成图全脑中位数 MD 预测痴呆的准确性与真实值相当(SCANS 真实值 c 指数为 0.822,合成值为 0.821;RUN DMC 真实值为 0.816,合成值为 0.812),优于脑白质高信号体积(SCANS,0.534;RUN DMC,0.710)。
我们开发了一种快速且可推广的方法,从 T1 合成 FA/MD 图,以提高当未获取弥散张量成像数据时小血管病痴呆的预测准确性。