Sukul Pritam, Schubert Jochen K, Kamysek Svend, Trefz Phillip, Miekisch Wolfram
Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Dept. of Anaesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, D-18057 Rostock, Germany.
J Breath Res. 2017 Nov 1;11(4):047108. doi: 10.1088/1752-7163/aa8d86.
Respiratory parameters such as flow or rate have complex effects on the exhalation of volatile substances and can hamper clinical interpretation of breath biomarkers. We have investigated the effects of progressively applied upper-airway resistances on the exhalation of volatile organic compounds (VOCs) in healthy humans. We performed real-time mass-spectrometric determination of breath volatiles in 50 subjects with parallel, non-invasive hemodynamic monitoring, breath-resolved spirometry and capnometry during controlled tidal breathing (12 breaths/min). Airway resistance was increased by changing the mouthpiece diameters from 2.5 cm to 1.0 cm and to 0.5 cm. At the smallest diameter, oxygen uptake increased (35%↑). Cardiac output decreased (6%↓) but end-tidal PCO (8%↑) and exhalation of blood-borne isoprene (19%↑) increased. Carbon dioxide production remained constant. Furan, hydrogen sulphide mirrored isoprene. Despite lowered minute ventilation (4%↓) acetone concentrations decreased (3%↓). Exogenous acetonitrile, propionic acid, isopropanol, limonene mimicked acetone. VOC concentration changes could be modelled through substance volatility. Airway resistance-induced changes in hemodynamics, and ventilation can affect VOC exhalation and thereby interfere with breath biomarker interpretation. The effects of collateral ventilation, intra-alveolar pressure gradients and respiratory mechanics had to be considered to explain the exhalation kinetics of CO and VOCs. Conventional breath sampling via smaller mouthpiece diameters (≤1.0 cm, e.g. via straw in Tedlar bags or canisters, etc) will immediately affect VOC exhalation and thereby mislead the analysis of the obtained results. Endogenous isoprene may probe respiratory muscle workload under obstructive conditions. Breath-gas analysis might enhance our understanding of diagnosis and management of obstructive lung diseases in the future.
诸如流量或速率等呼吸参数对挥发性物质的呼出具有复杂影响,并且可能妨碍呼吸生物标志物的临床解读。我们研究了逐步施加的上呼吸道阻力对健康人体挥发性有机化合物(VOCs)呼出的影响。我们在50名受试者进行受控潮气呼吸(12次/分钟)期间,通过并行、非侵入性血流动力学监测、逐次呼吸的肺活量测定和二氧化碳测定,对呼出的挥发性物质进行了实时质谱测定。通过将咬嘴直径从2.5厘米改变为1.0厘米,再到0.5厘米来增加气道阻力。在最小直径时,摄氧量增加(升高35%)。心输出量下降(下降6%),但呼气末PCO₂升高(升高8%),血源性异戊二烯的呼出量增加(升高19%)。二氧化碳产生量保持恒定。呋喃、硫化氢与异戊二烯情况相似。尽管分钟通气量降低(降低4%),丙酮浓度仍下降(下降3%)。外源性乙腈、丙酸、异丙醇、柠檬烯的情况与丙酮相似。VOC浓度变化可通过物质挥发性进行建模。气道阻力引起的血流动力学变化和通气会影响VOC呼出,从而干扰呼吸生物标志物的解读。必须考虑侧支通气、肺泡内压力梯度和呼吸力学的影响,以解释CO和VOCs的呼出动力学。通过较小咬嘴直径(≤1.0厘米,例如通过泰德拉袋或罐中的吸管等)进行传统呼气采样会立即影响VOC呼出,从而误导对所得结果的分析。内源性异戊二烯可能可用于探测阻塞性条件下的呼吸肌工作量。未来,呼气气体分析可能会增进我们对阻塞性肺病诊断和管理的理解。