Department of Computer Science, Rice University, Houston, Texas, USA.
Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
Genome Biol. 2017 Sep 19;18(1):178. doi: 10.1186/s13059-017-1311-2.
Single-cell sequencing enables the inference of tumor phylogenies that provide insights on intra-tumor heterogeneity and evolutionary trajectories. Recently introduced methods perform this task under the infinite-sites assumption, violations of which, due to chromosomal deletions and loss of heterozygosity, necessitate the development of inference methods that utilize finite-sites models. We propose a statistical inference method for tumor phylogenies from noisy single-cell sequencing data under a finite-sites model. The performance of our method on synthetic and experimental data sets from two colorectal cancer patients to trace evolutionary lineages in primary and metastatic tumors suggests that employing a finite-sites model leads to improved inference of tumor phylogenies.
单细胞测序能够推断肿瘤进化树,从而深入了解肿瘤内异质性和进化轨迹。最近提出的方法在无限位点假设下执行此任务,但由于染色体缺失和杂合性丢失,违反了该假设,因此需要开发利用有限位点模型的推断方法。我们提出了一种在有限位点模型下从嘈杂的单细胞测序数据中推断肿瘤进化树的统计推断方法。我们的方法在来自两名结直肠癌患者的合成和实验数据集上的性能表明,在推断原发性和转移性肿瘤的进化谱系时,采用有限位点模型可以提高肿瘤进化树的推断能力。