Renz Jessica, Dauda Kazeem A, Aga Olav N L, Diaz-Uriarte Ramon, Löhr Iren H, Blomberg Bjørn, Johnston Iain G
Department of Mathematics, University of Bergen, Bergen, Norway.
Computational Biology Unit, University of Bergen, Bergen, Norway.
mBio. 2025 Jun 11;16(6):e0048825. doi: 10.1128/mbio.00488-25. Epub 2025 May 21.
Can we understand and predict the evolutionary pathways by which bacteria acquire multi-drug resistance (MDR)? These questions have substantial potential impact in basic biology and in applied approaches to address the global health challenge of antimicrobial resistance (AMR). In this minireview, we discuss how a class of machine-learning approaches called evolutionary accumulation modeling (EvAM) may help reveal these dynamics using genetic and/or phenotypic AMR data sets, without requiring longitudinal sampling. These approaches are well-established in cancer progression and evolutionary biology but currently less used in AMR research. We discuss how EvAM can learn the evolutionary pathways by which drug resistances and other AMR features (for example, mutations driving these resistances) are acquired as pathogens evolve, predict next evolutionary steps, identify influences between AMR features, and explore differences in MDR evolution between regions, demographics, and more. We demonstrate a case study from the literature on MDR evolution in and discuss the strengths and weaknesses of these approaches, providing links to some approaches for implementation.
我们能否理解并预测细菌获得多重耐药性(MDR)的进化途径?这些问题在基础生物学以及应对抗微生物药物耐药性(AMR)这一全球健康挑战的应用方法中具有重大潜在影响。在这篇小型综述中,我们讨论了一类称为进化积累建模(EvAM)的机器学习方法如何能够利用遗传和/或表型AMR数据集来帮助揭示这些动态变化,而无需进行纵向采样。这些方法在癌症进展和进化生物学中已得到充分确立,但目前在AMR研究中的应用较少。我们讨论了EvAM如何能够了解随着病原体进化而获得耐药性和其他AMR特征(例如,驱动这些耐药性的突变)的进化途径,预测下一步的进化步骤,识别AMR特征之间的影响,并探索不同地区、人口统计学特征等之间MDR进化的差异。我们展示了一篇关于MDR进化的文献中的案例研究,并讨论了这些方法的优缺点,还提供了一些实施方法的链接。