Liu Xia, Zheng Guowei, Beheshti Iman, Ji Shanling, Gou Zhinan, Cui Wenkuo
School of Management Science and Information Engineering, Hebei University of Economics and Businesses, Shijiazhuang 050061, China.
School of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
Brain Sci. 2024 Dec 13;14(12):1252. doi: 10.3390/brainsci14121252.
A multimodal brain age estimation model could provide enhanced insights into brain aging. However, effectively integrating multimodal neuroimaging data to enhance the accuracy of brain age estimation remains a challenging task. In this study, we developed an innovative data fusion technique employing a low-rank tensor fusion algorithm, tailored specifically for deep learning-based frameworks aimed at brain age estimation. Specifically, we utilized structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), and magnetoencephalography (MEG) to extract spatial-temporal brain features with different properties. These features were fused using the low-rank tensor algorithm and employed as predictors for estimating brain age. Our prediction model achieved a desirable prediction accuracy on the independent test samples, demonstrating its robust performance. The results of our study suggest that the low-rank tensor fusion algorithm has the potential to effectively integrate multimodal data into deep learning frameworks for estimating brain age.
一个多模态脑龄估计模型可以为脑老化提供更深入的见解。然而,有效地整合多模态神经影像数据以提高脑龄估计的准确性仍然是一项具有挑战性的任务。在本研究中,我们开发了一种创新的数据融合技术,采用低秩张量融合算法,专门针对基于深度学习的脑龄估计框架进行了定制。具体而言,我们利用结构磁共振成像(sMRI)、扩散张量成像(DTI)和脑磁图(MEG)来提取具有不同特性的时空脑特征。这些特征使用低秩张量算法进行融合,并用作估计脑龄的预测因子。我们的预测模型在独立测试样本上实现了理想的预测准确性,证明了其稳健的性能。我们的研究结果表明,低秩张量融合算法有潜力将多模态数据有效地整合到深度学习框架中以估计脑龄。