文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用深度学习对口腔激光共聚焦显微镜图像中的癌变组织进行自动分类。

Automatic Classification of Cancerous Tissue in Laserendomicroscopy Images of the Oral Cavity using Deep Learning.

机构信息

Pattern Recognition Lab, Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

出版信息

Sci Rep. 2017 Sep 20;7(1):11979. doi: 10.1038/s41598-017-12320-8.


DOI:10.1038/s41598-017-12320-8
PMID:28931888
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5607286/
Abstract

Oral Squamous Cell Carcinoma (OSCC) is a common type of cancer of the oral epithelium. Despite their high impact on mortality, sufficient screening methods for early diagnosis of OSCC often lack accuracy and thus OSCCs are mostly diagnosed at a late stage. Early detection and accurate outline estimation of OSCCs would lead to a better curative outcome and a reduction in recurrence rates after surgical treatment. Confocal Laser Endomicroscopy (CLE) records sub-surface micro-anatomical images for in vivo cell structure analysis. Recent CLE studies showed great prospects for a reliable, real-time ultrastructural imaging of OSCC in situ. We present and evaluate a novel automatic approach for OSCC diagnosis using deep learning technologies on CLE images. The method is compared against textural feature-based machine learning approaches that represent the current state of the art. For this work, CLE image sequences (7894 images) from patients diagnosed with OSCC were obtained from 4 specific locations in the oral cavity, including the OSCC lesion. The present approach is found to outperform the state of the art in CLE image recognition with an area under the curve (AUC) of 0.96 and a mean accuracy of 88.3% (sensitivity 86.6%, specificity 90%).

摘要

口腔鳞状细胞癌(OSCC)是口腔上皮的一种常见癌症类型。尽管它们对死亡率有很大影响,但用于早期诊断 OSCC 的充分筛选方法往往准确性不足,因此 OSCC 大多在晚期才被诊断出来。早期发现和准确估计 OSCC 可带来更好的治疗效果,并降低手术后的复发率。共焦激光内窥镜(CLE)记录了用于体内细胞结构分析的亚表面微观解剖图像。最近的 CLE 研究表明,该技术在原位可靠、实时超微结构成像 OSCC 方面具有广阔的前景。我们提出并评估了一种新的基于深度学习技术的自动诊断 OSCC 的方法,该方法在 CLE 图像上进行了比较。该方法与基于纹理特征的机器学习方法进行了比较,后者代表了目前的最先进水平。在这项工作中,从口腔中 4 个特定位置(包括 OSCC 病变)获得了诊断为 OSCC 的患者的 CLE 图像序列(7894 张图像)。研究发现,该方法在 CLE 图像识别方面优于现有技术,曲线下面积(AUC)为 0.96,平均准确率为 88.3%(灵敏度 86.6%,特异性 90%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/455d/5607286/68fff191fa88/41598_2017_12320_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/455d/5607286/b7cc9e68f3ab/41598_2017_12320_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/455d/5607286/d8b9bc071b2c/41598_2017_12320_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/455d/5607286/4add39351b0c/41598_2017_12320_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/455d/5607286/1572efdee12b/41598_2017_12320_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/455d/5607286/6019013fb6c8/41598_2017_12320_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/455d/5607286/68fff191fa88/41598_2017_12320_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/455d/5607286/b7cc9e68f3ab/41598_2017_12320_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/455d/5607286/d8b9bc071b2c/41598_2017_12320_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/455d/5607286/4add39351b0c/41598_2017_12320_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/455d/5607286/1572efdee12b/41598_2017_12320_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/455d/5607286/6019013fb6c8/41598_2017_12320_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/455d/5607286/68fff191fa88/41598_2017_12320_Fig6_HTML.jpg

相似文献

[1]
Automatic Classification of Cancerous Tissue in Laserendomicroscopy Images of the Oral Cavity using Deep Learning.

Sci Rep. 2017-9-20

[2]
Development and validation of a classification and scoring system for the diagnosis of oral squamous cell carcinomas through confocal laser endomicroscopy.

J Transl Med. 2016-6-3

[3]
Deep learning-based detection of motion artifacts in probe-based confocal laser endomicroscopy images.

Int J Comput Assist Radiol Surg. 2018-8-4

[4]
An Image Recognition Framework for Oral Cancer Cells.

J Healthc Eng. 2021

[5]
Diagnostic Accuracy of Confocal Laser Endomicroscopy for the Diagnosis of Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis.

Int J Environ Res Public Health. 2021-11-25

[6]
Dynamic real-time optical microscopy of oral mucosal lesions using confocal laser endomicroscopy.

J Oral Pathol Med. 2023-7

[7]
Systematic classification of confocal laser endomicroscopy for the diagnosis of oral cavity carcinoma.

Oral Oncol. 2022-9

[8]
Enhancing oral squamous cell carcinoma detection: a novel approach using improved EfficientNet architecture.

BMC Oral Health. 2024-5-23

[9]
Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm.

J Cancer Res Clin Oncol. 2019-1-3

[10]
Interleukin 6 and interleukin 8 as potential biomarkers for oral cavity and oropharyngeal squamous cell carcinoma.

Arch Otolaryngol Head Neck Surg. 2004-8

引用本文的文献

[1]
Enhancing head and neck cancer detection accuracy in digitized whole-slide histology with the HNSC-classifier: a deep learning approach.

Front Mol Biosci. 2025-8-1

[2]
gamUnet: designing global attention-based CNN architectures for enhanced oral cancer detection and segmentation.

Front Med (Lausanne). 2025-7-23

[3]
The Diagnostic Performance of Large Language Models and Oral Medicine Consultants for Identifying Oral Lesions in Text-Based Clinical Scenarios: Prospective Comparative Study.

JMIR AI. 2025-4-24

[4]
Artificial intelligence-driven clinical decision support systems for early detection and precision therapy in oral cancer: a mini review.

Front Oral Health. 2025-4-28

[5]
The Laryngovibrogram as a normalized spatiotemporal representation of vocal fold dynamics.

Sci Rep. 2025-5-12

[6]
Artificial Intelligence in Dentistry: A Narrative Review of Diagnostic and Therapeutic Applications.

Med Sci Monit. 2025-4-8

[7]
Characterization of irradiated mucosa using confocal laser endomicroscopy in the upper aerodigestive tract.

Eur Arch Otorhinolaryngol. 2025-5

[8]
The Transformative Role of Artificial Intelligence in Dentistry: A Comprehensive Overview. Part 1: Fundamentals of AI, and its Contemporary Applications in Dentistry.

Int Dent J. 2025-4

[9]
Artificial Intelligence and Dentistry: The Future.

J Pharm Bioallied Sci. 2024-12

[10]
Artificial Intelligence in Oral Cancer: A Comprehensive Scoping Review of Diagnostic and Prognostic Applications.

Diagnostics (Basel). 2025-1-24

本文引用的文献

[1]
Dermatologist-level classification of skin cancer with deep neural networks.

Nature. 2017-2-2

[2]
Development and validation of a classification and scoring system for the diagnosis of oral squamous cell carcinomas through confocal laser endomicroscopy.

J Transl Med. 2016-6-3

[3]
Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis.

Sci Rep. 2016-5-23

[4]
Automatic Tissue Differentiation Based on Confocal Endomicroscopic Images for Intraoperative Guidance in Neurosurgery.

Biomed Res Int. 2016

[5]
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.

IEEE Trans Med Imaging. 2016-5

[6]
Automated analysis of confocal laser endomicroscopy images to detect head and neck cancer.

Head Neck. 2016-4

[7]
Improving Computer-Aided Detection Using Convolutional Neural Networks and Random View Aggregation.

IEEE Trans Med Imaging. 2016-5

[8]
Raman difference spectroscopy: a non-invasive method for identification of oral squamous cell carcinoma.

Biomed Opt Express. 2014-8-28

[9]
Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012.

Int J Cancer. 2014-10-9

[10]
Confocal laser endomicroscopy for non-invasive head and neck cancer imaging: a comprehensive review.

Oral Oncol. 2014-6-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索