Suppr超能文献

微纤维支架增强诱导多能干细胞的内皮分化和组织化。

Microfibrous Scaffolds Enhance Endothelial Differentiation and Organization of Induced Pluripotent Stem Cells.

作者信息

Kim Joseph J, Hou Luqia, Yang Guang, Mezak Nicholas P, Wanjare Maureen, Joubert Lydia M, Huang Ngan F

机构信息

Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.

Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.

出版信息

Cell Mol Bioeng. 2017 Oct;10(5):417-432. doi: 10.1007/s12195-017-0502-y. Epub 2017 Aug 15.

Abstract

INTRODUCTION

Human induced pluripotent stem cells (iPSCs) are a promising source of endothelial cells (iPSC-ECs) for engineering three-dimensional (3D) vascularized cardiac tissues. To mimic cardiac microvasculature, in which capillaries are oriented in parallel, we hypothesized that endothelial differentiation of iPSCs within topographically aligned 3D scaffolds would be a facile one-step approach to generate iPSC-ECs as well as induce aligned vascular organization.

METHODS

Human iPSCs underwent endothelial differentiation within electrospun 3D polycaprolactone (PCL) scaffolds having either randomly oriented or parallel-aligned microfibers. Using transcriptional, protein, and endothelial functional assays, endothelial differentiation was compared between conventional two-dimensional (2D) films and 3D scaffolds having either randomly oriented or aligned microfibers. Furthermore, the role of parallel-aligned microfiber patterning on the organization of vessel-like networks was assessed.

RESULTS

The cells in both the randomly oriented and aligned 3D scaffolds demonstrated an 11-fold upregulation in gene expression of the endothelial phenotypic marker, CD31, compared to cells on 2D films. This upregulation corresponded to >3-fold increase in CD31 protein expression in 3D scaffolds, compared to 2D films. Concomitantly, other endothelial phenotypic markers including CD144 and endothelial nitric oxide synthase also showed significant transcriptional upregulation in 3D scaffolds by >7-fold, compared to 2D films. Nitric oxide production, which is characteristic of endothelial function, was produced 4-fold more abundantly in 3D scaffolds, compared to on 2D PCL films. Within aligned scaffolds, the iPSC-ECs displayed parallel-aligned vascular-like networks with 70% longer branch length, compared to cells in randomly oriented scaffolds, suggesting that fiber topography modulates vascular network-like formation and patterning.

CONCLUSION

Together, these results demonstrate that 3D scaffold structure promotes endothelial differentiation, compared to 2D substrates, and that aligned topographical patterning induces anisotropic vascular network organization.

摘要

引言

人类诱导多能干细胞(iPSC)是用于构建三维(3D)血管化心脏组织的内皮细胞(iPSC-EC)的一个有前景的来源。为了模拟心脏微血管系统(其中毛细血管呈平行排列),我们推测在地形排列的3D支架内对iPSC进行内皮分化将是一种简便的一步法,既能生成iPSC-EC,又能诱导血管排列。

方法

人类iPSC在具有随机取向或平行排列微纤维的电纺3D聚己内酯(PCL)支架内进行内皮分化。使用转录、蛋白质和内皮功能测定法,比较了传统二维(2D)薄膜与具有随机取向或排列微纤维的3D支架之间的内皮分化情况。此外,评估了平行排列的微纤维图案对血管样网络组织的作用。

结果

与2D薄膜上的细胞相比,随机取向和排列的3D支架中的细胞在内皮表型标志物CD31的基因表达上均上调了11倍。与2D薄膜相比,这种上调对应于3D支架中CD31蛋白表达增加了3倍以上。同时,与2D薄膜相比,包括CD144和内皮型一氧化氮合酶在内的其他内皮表型标志物在3D支架中也显示出显著的转录上调,超过7倍。作为内皮功能特征的一氧化氮产生量,在3D支架中比在2D PCL薄膜上多产生4倍。在排列的支架内,iPSC-EC显示出平行排列的血管样网络,与随机取向支架中的细胞相比,分支长度长70%,这表明纤维地形调节血管网络样的形成和图案。

结论

总之,这些结果表明,与2D底物相比,3D支架结构促进内皮分化,并且排列的地形图案诱导各向异性血管网络组织。

相似文献

1
Microfibrous Scaffolds Enhance Endothelial Differentiation and Organization of Induced Pluripotent Stem Cells.
Cell Mol Bioeng. 2017 Oct;10(5):417-432. doi: 10.1007/s12195-017-0502-y. Epub 2017 Aug 15.
3
Vascularization of Engineered Spatially Patterned Myocardial Tissue Derived From Human Pluripotent Stem Cells .
Front Bioeng Biotechnol. 2019 Sep 3;7:208. doi: 10.3389/fbioe.2019.00208. eCollection 2019.
8
Elucidating molecular events underlying topography mediated cardiomyogenesis of stem cells on 3D nanofibrous scaffolds.
Mater Sci Eng C Mater Biol Appl. 2018 Jul 1;88:104-114. doi: 10.1016/j.msec.2018.03.012. Epub 2018 Mar 15.

引用本文的文献

1
Small diameter vascular grafts: progress on electrospinning matrix/stem cell blending approach.
Front Bioeng Biotechnol. 2024 May 14;12:1385032. doi: 10.3389/fbioe.2024.1385032. eCollection 2024.
3
Engineering Spatiotemporal Control in Vascularized Tissues.
Bioengineering (Basel). 2022 Oct 14;9(10):555. doi: 10.3390/bioengineering9100555.
7
Vascularization in tissue engineering: fundamentals and state-of-art.
Prog Biomed Eng (Bristol). 2020 Jan;2(1). doi: 10.1088/2516-1091/ab5637. Epub 2020 Jan 9.
8
Engineering Cardiovascular Tissue Chips for Disease Modeling and Drug Screening Applications.
Front Bioeng Biotechnol. 2021 Apr 20;9:673212. doi: 10.3389/fbioe.2021.673212. eCollection 2021.
9
Micro- and nanoscale biophysical cues for cardiovascular disease therapy.
Nanomedicine. 2021 Jun;34:102365. doi: 10.1016/j.nano.2021.102365. Epub 2021 Feb 9.
10
Biomaterials and Advanced Biofabrication Techniques in hiPSCs Based Neuromyopathic Disease Modeling.
Front Bioeng Biotechnol. 2019 Nov 29;7:373. doi: 10.3389/fbioe.2019.00373. eCollection 2019.

本文引用的文献

1
A Genome-wide Analysis of Human Pluripotent Stem Cell-Derived Endothelial Cells in 2D or 3D Culture.
Stem Cell Reports. 2017 Apr 11;8(4):907-918. doi: 10.1016/j.stemcr.2017.02.014. Epub 2017 Mar 23.
2
Analysis of Transcriptional Variability in a Large Human iPSC Library Reveals Genetic and Non-genetic Determinants of Heterogeneity.
Cell Stem Cell. 2017 Apr 6;20(4):518-532.e9. doi: 10.1016/j.stem.2016.11.005. Epub 2016 Dec 22.
3
Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments.
J Mater Chem B. 2016 May 28;4(20):3544-3554. doi: 10.1039/C5TB02745D. Epub 2016 Feb 4.
4
Effect of biophysical cues on reprogramming to cardiomyocytes.
Biomaterials. 2016 Oct;103:1-11. doi: 10.1016/j.biomaterials.2016.06.034. Epub 2016 Jun 23.
6
Vascularization of three-dimensional engineered tissues for regenerative medicine applications.
Acta Biomater. 2016 Sep 1;41:17-26. doi: 10.1016/j.actbio.2016.06.001. Epub 2016 Jun 2.
7
Forces and mechanotransduction in 3D vascular biology.
Curr Opin Cell Biol. 2016 Oct;42:73-79. doi: 10.1016/j.ceb.2016.04.011. Epub 2016 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验