Liljeström Ville, Ora Ari, Hassinen Jukka, Rekola Heikki T, Heilala Maria, Hynninen Ville, Joensuu Jussi J, Ras Robin H A, Törmä Päivi, Ikkala Olli, Kostiainen Mauri A
HYBER Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076, Aalto, Finland.
HYBER Centre of Excellence, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland.
Nat Commun. 2017 Sep 22;8(1):671. doi: 10.1038/s41467-017-00697-z.
Material properties depend critically on the packing and order of constituent units throughout length scales. Beyond classically explored molecular self-assembly, structure formation in the nanoparticle and colloidal length scales have recently been actively explored for new functions. Structure of colloidal assemblies depends strongly on the assembly process, and higher structural control can be reliably achieved only if the process is deterministic. Here we show that self-assembly of cationic spherical metal nanoparticles and anionic rod-like viruses yields well-defined binary superlattice wires. The superlattice structures are explained by a cooperative assembly pathway that proceeds in a zipper-like manner after nucleation. Curiously, the formed superstructure shows right-handed helical twisting due to the right-handed structure of the virus. This leads to structure-dependent chiral plasmonic function of the material. The work highlights the importance of well-defined colloidal units when pursuing unforeseen and complex assemblies.Colloidal self-assembly is a unique method to produce three-dimensional materials with well-defined hierarchical structures and functionalities. Liljeström et al. show controlled preparation of macroscopic chiral wires with helical plasmonic superlattice structure composed of metal nanoparticles and viruses.
材料特性在很大程度上取决于整个长度尺度上组成单元的堆积和排列顺序。除了经典研究的分子自组装外,纳米颗粒和胶体长度尺度上的结构形成最近也被积极探索以实现新功能。胶体组装体的结构强烈依赖于组装过程,只有当过程是确定性的时,才能可靠地实现更高的结构控制。在这里,我们表明阳离子球形金属纳米颗粒和阴离子棒状病毒的自组装产生了明确的二元超晶格线。超晶格结构由成核后以拉链状方式进行的协同组装途径来解释。奇怪的是,由于病毒的右手结构,形成的超结构显示出右手螺旋扭曲。这导致了材料依赖于结构的手性等离子体功能。这项工作突出了在追求不可预见的复杂组装时,明确的胶体单元的重要性。胶体自组装是一种独特的方法,用于生产具有明确分层结构和功能的三维材料。利耶斯特伦等人展示了由金属纳米颗粒和病毒组成的具有螺旋等离子体超晶格结构的宏观手性线的可控制备。