Suppr超能文献

跨语言解码故事意义的神经表示。

Decoding the neural representation of story meanings across languages.

机构信息

University of Southern California, Los Angeles, CA.

Google Brain, Mountain View, California.

出版信息

Hum Brain Mapp. 2017 Dec;38(12):6096-6106. doi: 10.1002/hbm.23814. Epub 2017 Sep 20.

Abstract

Drawing from a common lexicon of semantic units, humans fashion narratives whose meaning transcends that of their individual utterances. However, while brain regions that represent lower-level semantic units, such as words and sentences, have been identified, questions remain about the neural representation of narrative comprehension, which involves inferring cumulative meaning. To address these questions, we exposed English, Mandarin, and Farsi native speakers to native language translations of the same stories during fMRI scanning. Using a new technique in natural language processing, we calculated the distributed representations of these stories (capturing the meaning of the stories in high-dimensional semantic space), and demonstrate that using these representations we can identify the specific story a participant was reading from the neural data. Notably, this was possible even when the distributed representations were calculated using stories in a different language than the participant was reading. Our results reveal that identification relied on a collection of brain regions most prominently located in the default mode network. These results demonstrate that neuro-semantic encoding of narratives happens at levels higher than individual semantic units and that this encoding is systematic across both individuals and languages. Hum Brain Mapp 38:6096-6106, 2017. © 2017 Wiley Periodicals, Inc.

摘要

从语义单元的共同词汇中汲取灵感,人类构建了叙事,其意义超越了其单个话语。然而,尽管已经确定了代表较低层次语义单元(如单词和句子)的大脑区域,但关于叙事理解的神经表示仍存在疑问,因为叙事理解涉及推断累积意义。为了解决这些问题,我们在 fMRI 扫描过程中让英语、汉语和波斯语母语者接触母语翻译的相同故事。我们使用自然语言处理中的一种新技术来计算这些故事的分布式表示(在高维语义空间中捕捉故事的含义),并证明我们可以使用这些表示来从神经数据中识别参与者正在阅读的特定故事。值得注意的是,即使使用参与者正在阅读的不同语言的故事来计算分布式表示,这也是可能的。我们的结果表明,识别依赖于一组大脑区域,这些区域最突出地位于默认模式网络中。这些结果表明,叙事的神经语义编码发生在高于单个语义单元的水平,并且这种编码在个体和语言之间都是系统的。人类大脑映射 38:6096-6106, 2017. © 2017 Wiley Periodicals, Inc.

相似文献

1
Decoding the neural representation of story meanings across languages.
Hum Brain Mapp. 2017 Dec;38(12):6096-6106. doi: 10.1002/hbm.23814. Epub 2017 Sep 20.
3
Deep Artificial Neural Networks Reveal a Distributed Cortical Network Encoding Propositional Sentence-Level Meaning.
J Neurosci. 2021 May 5;41(18):4100-4119. doi: 10.1523/JNEUROSCI.1152-20.2021. Epub 2021 Mar 22.
4
Native and non-native reading of sentences: an fMRI experiment.
Neuroimage. 2006 May 15;31(1):354-65. doi: 10.1016/j.neuroimage.2005.11.047. Epub 2006 Jan 19.
5
"Neural overlap of L1 and L2 semantic representations across visual and auditory modalities: a decoding approach".
Neuropsychologia. 2018 May;113:68-77. doi: 10.1016/j.neuropsychologia.2018.03.037. Epub 2018 Mar 29.
6
Neural correlates of fine-grained meaning distinctions: An fMRI investigation of scalar quantifiers.
Hum Brain Mapp. 2017 Aug;38(8):3848-3864. doi: 10.1002/hbm.23633. Epub 2017 May 8.
7
The Representation of Semantic Information Across Human Cerebral Cortex During Listening Versus Reading Is Invariant to Stimulus Modality.
J Neurosci. 2019 Sep 25;39(39):7722-7736. doi: 10.1523/JNEUROSCI.0675-19.2019. Epub 2019 Aug 19.
9
Modeling activation and effective connectivity of VWFA in same script bilinguals.
Hum Brain Mapp. 2014 Jun;35(6):2543-60. doi: 10.1002/hbm.22348. Epub 2013 Sep 3.
10
Neurocognitive mechanisms supporting the generalization of concepts across languages.
Neuropsychologia. 2021 Mar 12;153:107740. doi: 10.1016/j.neuropsychologia.2020.107740. Epub 2020 Dec 31.

引用本文的文献

1
Hubs and interaction: the brain's meta-loop.
Cereb Cortex. 2025 Mar 6;35(3). doi: 10.1093/cercor/bhaf035.
2
Multisensory naturalistic decoding with high-density diffuse optical tomography.
Neurophotonics. 2025 Jan;12(1):015002. doi: 10.1117/1.NPh.12.1.015002. Epub 2025 Jan 23.
3
Dissociable Neural Mechanisms for Human Inference Processing Predicted by Static and Contextual Language Models.
Neurobiol Lang (Camb). 2024 Apr 1;5(1):248-263. doi: 10.1162/nol_a_00090. eCollection 2024.
4
How does the "default mode" network contribute to semantic cognition?
Brain Lang. 2024 May;252:105405. doi: 10.1016/j.bandl.2024.105405. Epub 2024 Apr 4.
6
Machine Learning as a Model for Cultural Learning: Teaching an Algorithm What it Means to be Fat.
Sociol Methods Res. 2022 Nov;51(4):1484-1539. doi: 10.1177/00491241221122603. Epub 2022 Dec 2.
8
A Model of Online Temporal-Spatial Integration for Immediacy and Overrule in Discourse Comprehension.
Neurobiol Lang (Camb). 2021 Jan 1;2(1):83-105. doi: 10.1162/nol_a_00026. eCollection 2021.
10

本文引用的文献

1
How We Transmit Memories to Other Brains: Constructing Shared Neural Representations Via Communication.
Cereb Cortex. 2017 Oct 1;27(10):4988-5000. doi: 10.1093/cercor/bhx202.
2
Shared memories reveal shared structure in neural activity across individuals.
Nat Neurosci. 2017 Jan;20(1):115-125. doi: 10.1038/nn.4450. Epub 2016 Dec 5.
4
How long is now? The multiple timescales of language processing.
Behav Brain Sci. 2016 Jan;39:e77. doi: 10.1017/S0140525X15000825.
5
Dynamic reconfiguration of the default mode network during narrative comprehension.
Nat Commun. 2016 Jul 18;7:12141. doi: 10.1038/ncomms12141.
6
Semantic Structural Alignment of Neural Representational Spaces Enables Translation between English and Chinese Words.
J Cogn Neurosci. 2016 Nov;28(11):1749-1759. doi: 10.1162/jocn_a_01000. Epub 2016 Jun 17.
7
Natural speech reveals the semantic maps that tile human cerebral cortex.
Nature. 2016 Apr 28;532(7600):453-8. doi: 10.1038/nature17637.
8
Processing Narratives Concerning Protected Values: A Cross-Cultural Investigation of Neural Correlates.
Cereb Cortex. 2017 Feb 1;27(2):1428-1438. doi: 10.1093/cercor/bhv325.
9
Interpretable Semantic Vectors from a Joint Model of Brain- and Text-Based Meaning.
Proc Conf Assoc Comput Linguist Meet. 2014 Jun;2014:489-499. doi: 10.3115/v1/p14-1046.
10
Hierarchical process memory: memory as an integral component of information processing.
Trends Cogn Sci. 2015 Jun;19(6):304-13. doi: 10.1016/j.tics.2015.04.006. Epub 2015 May 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验