Suppr超能文献

配位加速“铁提取”实现介孔硅基中空纳米粒子的快速生物降解。

Coordination-Accelerated "Iron Extraction" Enables Fast Biodegradation of Mesoporous Silica-Based Hollow Nanoparticles.

机构信息

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.

School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China.

出版信息

Adv Healthc Mater. 2017 Nov;6(22). doi: 10.1002/adhm.201700720. Epub 2017 Sep 21.

Abstract

Biodegradation behavior of inorganic silica-based nanoplatforms is of critical importance in their clinical translations, but still remains a great challenge in achieving this goal by composition regulation of biocompatible silica framework. In the present work, a chemical coordination-accelerated biodegradation strategy to endow hollow mesoporous silica nanoparticles (HMSNs) with unique coordination-responsive biodegradability, on-demand coordination-responsive drug releasing behavior, and significantly enhanced chemotherapeutic efficacy by directly doping iron (Fe) ions into the framework of mesoporous silica is reported. A simple but versatile dissolution-regrowth strategy has been developed to enable the framework Fe doping via chemical bonding. The deferiprone-mediated biodegradation of Fe-doped HMSNs (Fe-HMSNs) has been comprehensively evaluated both in simulated body fluid and intracellular level, which have exhibited a specific coordination-accelerated biodegradation behavior. In addition to high biocompatibility of Fe-HMSNs, the anticancer drug doxorubicin (DOX)-loaded Fe-HMSNs show enhanced tumor-suppressing effect on 4T1 mammary cancer xenograft. This work paves a new way for tuning the biodegradation performance of mesoporous silica-based nanoplatforms simply by biocompatible Fe-ion doping into silica framework based on the specific coordination property between introduced metal Fe ions with Fe-coordination proteins.

摘要

无机硅基纳米平台的生物降解行为在其临床转化中至关重要,但通过调节生物相容性硅框架的组成来实现这一目标仍然是一个巨大的挑战。在本工作中,报道了一种通过化学配位加速降解的策略,赋予中空介孔硅纳米粒子(HMSNs)独特的配位响应生物降解性、按需配位响应药物释放行为,以及通过将铁(Fe)离子直接掺杂到介孔硅骨架中显著增强化学治疗效果。开发了一种简单但通用的溶解-再生长策略,通过化学键合实现框架 Fe 掺杂。通过在模拟体液和细胞内水平上对 Fe 掺杂 HMSNs(Fe-HMSNs)的降解进行了全面评估,发现其具有特定的配位加速降解行为。除了 Fe-HMSNs 的高生物相容性外,负载阿霉素(DOX)的 Fe-HMSNs 对 4T1 乳腺癌异种移植瘤显示出增强的肿瘤抑制作用。这项工作为通过将生物相容性的 Fe 离子简单地掺杂到介孔硅骨架中,基于引入的金属 Fe 离子与 Fe 配位蛋白之间的特定配位性质,来调节基于介孔硅的纳米平台的生物降解性能开辟了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验