Suppr超能文献

网络模块识别——一种普遍的理论偏差和最佳实践。

Network module identification-A widespread theoretical bias and best practices.

机构信息

Systems Biology Lab, Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France; Functional Genetics of Infectious Diseases Unit, Department Genomes and Genetics, Institut Pasteur, Paris, France; Université Paris-Descartes, Sorbonne Paris Cité, Paris, France.

Systems Biology Lab, Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France.

出版信息

Methods. 2018 Jan 1;132:19-25. doi: 10.1016/j.ymeth.2017.08.008. Epub 2017 Sep 21.

Abstract

Biological processes often manifest themselves as coordinated changes across modules, i.e., sets of interacting genes. Commonly, the high dimensionality of genome-scale data prevents the visual identification of such modules, and straightforward computational search through a set of known pathways is a limited approach. Therefore, tools for the data-driven, computational, identification of modules in gene interaction networks have become popular components of visualization and visual analytics workflows. However, many such tools are known to result in modules that are large, and therefore hard to interpret biologically. Here, we show that the empirically known tendency towards large modules can be attributed to a statistical bias present in many module identification tools, and discuss possible remedies from a mathematical perspective. In the current absence of a straightforward practical solution, we outline our view of best practices for the use of the existing tools.

摘要

生物过程通常表现为模块之间的协调变化,即一组相互作用的基因。通常,基因组规模数据的高维性阻止了对这种模块的直观识别,并且通过一组已知途径进行直接的计算搜索是一种有限的方法。因此,用于基因相互作用网络中模块的基于数据的计算识别的工具已成为可视化和可视分析工作流程的流行组件。然而,众所周知,许多这样的工具会导致模块过大,因此难以从生物学角度进行解释。在这里,我们表明,在许多模块识别工具中存在的统计偏差可以归因于经验上已知的大型模块的趋势,并从数学角度讨论可能的补救措施。在目前没有直接实用解决方案的情况下,我们概述了我们对现有工具使用的最佳实践的看法。

相似文献

1
Network module identification-A widespread theoretical bias and best practices.
Methods. 2018 Jan 1;132:19-25. doi: 10.1016/j.ymeth.2017.08.008. Epub 2017 Sep 21.
2
Identification of regulatory modules in genome scale transcription regulatory networks.
BMC Syst Biol. 2017 Dec 15;11(1):140. doi: 10.1186/s12918-017-0493-2.
3
SABRE: a method for assessing the stability of gene modules in complex tissues and subject populations.
BMC Bioinformatics. 2016 Nov 14;17(1):460. doi: 10.1186/s12859-016-1319-8.
4
Identification of consistent functional genetic modules.
Stat Appl Genet Mol Biol. 2016 Mar;15(1):1-18. doi: 10.1515/sagmb-2015-0026.
5
Assessment of network module identification across complex diseases.
Nat Methods. 2019 Sep;16(9):843-852. doi: 10.1038/s41592-019-0509-5. Epub 2019 Aug 30.
7
CCor: A whole genome network-based similarity measure between two genes.
Biometrics. 2016 Dec;72(4):1216-1225. doi: 10.1111/biom.12508. Epub 2016 Mar 8.
9
DOMINO: a network-based active module identification algorithm with reduced rate of false calls.
Mol Syst Biol. 2021 Jan;17(1):e9593. doi: 10.15252/msb.20209593.
10
Systematic module approach identifies altered genes and pathways in four types of ovarian cancer.
Mol Med Rep. 2017 Dec;16(6):7907-7914. doi: 10.3892/mmr.2017.7649. Epub 2017 Sep 28.

引用本文的文献

1
Ant colony optimization for the identification of dysregulated gene subnetworks from expression data.
BMC Bioinformatics. 2024 Aug 1;25(1):254. doi: 10.1186/s12859-024-05871-x.
2
NetMix2: A Principled Network Propagation Algorithm for Identifying Altered Subnetworks.
J Comput Biol. 2022 Dec;29(12):1305-1323. doi: 10.1089/cmb.2022.0336.
3
TopoFun: a machine learning method to improve the functional similarity of gene co-expression modules.
NAR Genom Bioinform. 2021 Nov 8;3(4):lqab103. doi: 10.1093/nargab/lqab103. eCollection 2021 Dec.
5
Boosting GWAS using biological networks: A study on susceptibility to familial breast cancer.
PLoS Comput Biol. 2021 Mar 18;17(3):e1008819. doi: 10.1371/journal.pcbi.1008819. eCollection 2021 Mar.
6
DOMINO: a network-based active module identification algorithm with reduced rate of false calls.
Mol Syst Biol. 2021 Jan;17(1):e9593. doi: 10.15252/msb.20209593.
7
NetMix: A Network-Structured Mixture Model for Reduced-Bias Estimation of Altered Subnetworks.
J Comput Biol. 2021 May;28(5):469-484. doi: 10.1089/cmb.2020.0435. Epub 2021 Jan 5.
8
Molecular networks in Network Medicine: Development and applications.
Wiley Interdiscip Rev Syst Biol Med. 2020 Nov;12(6):e1489. doi: 10.1002/wsbm.1489. Epub 2020 Apr 19.
9
pathfindR: An R Package for Comprehensive Identification of Enriched Pathways in Omics Data Through Active Subnetworks.
Front Genet. 2019 Sep 25;10:858. doi: 10.3389/fgene.2019.00858. eCollection 2019.

本文引用的文献

1
On the performance of de novo pathway enrichment.
NPJ Syst Biol Appl. 2017 Mar 3;3:6. doi: 10.1038/s41540-017-0007-2. eCollection 2017.
2
Early Transcriptional Changes Induced by Wnt/-Catenin Signaling in Hippocampal Neurons.
Neural Plast. 2016;2016:4672841. doi: 10.1155/2016/4672841. Epub 2016 Dec 27.
3
SigMod: an exact and efficient method to identify a strongly interconnected disease-associated module in a gene network.
Bioinformatics. 2017 May 15;33(10):1536-1544. doi: 10.1093/bioinformatics/btx004.
4
Network-based analysis of omics data: the LEAN method.
Bioinformatics. 2017 Mar 1;33(5):701-709. doi: 10.1093/bioinformatics/btw676.
5
EW_dmGWAS: edge-weighted dense module search for genome-wide association studies and gene expression profiles.
Bioinformatics. 2015 Aug 1;31(15):2591-4. doi: 10.1093/bioinformatics/btv150. Epub 2015 Mar 24.
6
The discovery of integrated gene networks for autism and related disorders.
Genome Res. 2015 Jan;25(1):142-54. doi: 10.1101/gr.178855.114. Epub 2014 Nov 5.
7
STRING v10: protein-protein interaction networks, integrated over the tree of life.
Nucleic Acids Res. 2015 Jan;43(Database issue):D447-52. doi: 10.1093/nar/gku1003. Epub 2014 Oct 28.
8
PINBPA: cytoscape app for network analysis of GWAS data.
Bioinformatics. 2015 Jan 15;31(2):262-4. doi: 10.1093/bioinformatics/btu644. Epub 2014 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验