Department of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon.
BMC Bioinformatics. 2024 Aug 1;25(1):254. doi: 10.1186/s12859-024-05871-x.
High-throughput experimental technologies can provide deeper insights into pathway perturbations in biomedical studies. Accordingly, their usage is central to the identification of molecular targets and the subsequent development of suitable treatments for various diseases. Classical interpretations of generated data, such as differential gene expression and pathway analyses, disregard interconnections between studied genes when looking for gene-disease associations. Given that these interconnections are central to cellular processes, there has been a recent interest in incorporating them in such studies. The latter allows the detection of gene modules that underlie complex phenotypes in gene interaction networks. Existing methods either impose radius-based restrictions or freely grow modules at the expense of a statistical bias towards large modules. We propose a heuristic method, inspired by Ant Colony Optimization, to apply gene-level scoring and module identification with distance-based search constraints and penalties, rather than radius-based constraints.
We test and compare our results to other approaches using three datasets of different neurodegenerative diseases, namely Alzheimer's, Parkinson's, and Huntington's, over three independent experiments. We report the outcomes of enrichment analyses and concordance of gene-level scores for each disease. Results indicate that the proposed approach generally shows superior stability in comparison to existing methods. It produces stable and meaningful enrichment results in all three datasets which have different case to control proportions and sample sizes.
The presented network-based gene expression analysis approach successfully identifies dysregulated gene modules associated with a certain disease. Using a heuristic based on Ant Colony Optimization, we perform a distance-based search with no radius constraints. Experimental results support the effectiveness and stability of our method in prioritizing modules of high relevance. Our tool is publicly available at github.com/GhadiElHasbani/ACOxGS.git.
高通量实验技术可以为生物医学研究中的途径扰动提供更深入的见解。因此,它们的使用对于确定分子靶标以及随后为各种疾病开发合适的治疗方法至关重要。在寻找基因-疾病关联时,生成数据的经典解释(如差异基因表达和途径分析)忽略了研究基因之间的相互联系。鉴于这些相互联系是细胞过程的核心,最近人们对将它们纳入此类研究产生了兴趣。后者允许在基因相互作用网络中检测到潜在复杂表型的基因模块。现有的方法要么施加基于半径的限制,要么自由地扩展模块,而牺牲了大模块的统计偏差。我们提出了一种启发式方法,灵感来自于蚁群优化,该方法应用基因水平评分和基于距离的搜索约束和惩罚的模块识别,而不是基于半径的约束。
我们使用三种不同的神经退行性疾病数据集(即阿尔茨海默病、帕金森病和亨廷顿病),通过三个独立的实验,测试并比较了我们的结果与其他方法。我们报告了每种疾病的富集分析结果和基因水平评分的一致性。结果表明,与现有方法相比,所提出的方法通常具有更好的稳定性。它在三个数据集(具有不同病例与对照比例和样本大小)中均产生了稳定且有意义的富集结果。
所提出的基于网络的基因表达分析方法成功地识别了与特定疾病相关的失调基因模块。我们使用基于蚁群优化的启发式方法进行了无半径约束的基于距离的搜索。实验结果支持我们的方法在优先考虑高相关性模块方面的有效性和稳定性。我们的工具可在 github.com/GhadiElHasbani/ACOxGS.git 上公开获得。