Suppr超能文献

癌症流行病学中的代谢组学方法

Metabolomic Approaches in Cancer Epidemiology.

作者信息

Verma Mukesh, Banerjee Hirendra Nath

机构信息

Methods and Technologies Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Suite 4E102, 9609 Medical Center Drive, Bethesda, MD 20892, USA.

Department of Biological and Pharmaceutical Sciences, Elizabeth City State University, Campus Box 930, 1704 Weeksville Road, Elizabeth City, NC 27909, USA.

出版信息

Diseases. 2015 Aug 11;3(3):167-175. doi: 10.3390/diseases3030167.

Abstract

Metabolomics is the study of low molecular weight molecules or metabolites produced within cells and biological systems. It involves technologies such as mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) that can measure hundreds of thousands of unique chemical entities (UCEs). The metabolome provides one of the most accurate reflections of cellular activity at the functional level and can be leveraged to discern mechanistic information during normal and disease states. The advantages of metabolomics over other "omics" include its high sensitivity and ability to enable the analysis of relatively few metabolites compared with the number of genes and messenger RNAs (mRNAs). In clinical samples, metabolites are more stable than proteins or RNA. In fact, metabolomic profiling in basic, epidemiologic, clinical, and translational studies has revealed potential new biomarkers of disease and therapeutic outcome and has led to a novel mechanistic understanding of pathogenesis. These potential biomarkers include novel metabolites associated with cancer initiation, regression, and recurrence. Unlike genomics or even proteomics, however, the degree of metabolite complexity and heterogeneity within biological systems presents unique challenges that require specialized skills and resources to overcome. This article discusses epidemiologic studies of altered metabolite profiles in several cancers as well as challenges in the field and potential approaches to overcoming them.

摘要

代谢组学是对细胞和生物系统中产生的低分子量分子或代谢物的研究。它涉及质谱(MS)和核磁共振光谱(NMR)等技术,这些技术能够测量数十万种独特的化学实体(UCEs)。代谢组在功能水平上提供了细胞活性最准确的反映之一,可用于在正常和疾病状态下识别机制信息。代谢组学相对于其他“组学”的优势包括其高灵敏度以及与基因和信使RNA(mRNA)数量相比能够分析相对较少代谢物的能力。在临床样本中,代谢物比蛋白质或RNA更稳定。事实上,基础、流行病学、临床和转化研究中的代谢组学分析已经揭示了疾病和治疗结果的潜在新生物标志物,并带来了对发病机制的全新机制理解。这些潜在的生物标志物包括与癌症发生、消退和复发相关的新型代谢物。然而,与基因组学甚至蛋白质组学不同,生物系统中代谢物的复杂性和异质性程度带来了独特的挑战,需要专门的技能和资源来克服。本文讨论了几种癌症中代谢物谱改变的流行病学研究以及该领域的挑战和克服这些挑战的潜在方法。

相似文献

1
Metabolomic Approaches in Cancer Epidemiology.
Diseases. 2015 Aug 11;3(3):167-175. doi: 10.3390/diseases3030167.
3
Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology.
Int J Mol Sci. 2016 Apr 27;17(5):632. doi: 10.3390/ijms17050632.
4
The role of the Human Metabolome Database in inborn errors of metabolism.
J Inherit Metab Dis. 2018 May;41(3):329-336. doi: 10.1007/s10545-018-0137-8. Epub 2018 Apr 16.
5
Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics.
Prog Nucl Magn Reson Spectrosc. 2017 May;100:1-16. doi: 10.1016/j.pnmrs.2017.01.001. Epub 2017 Jan 11.
7
NMR-based metabolomics: a probe to utilize biodiversity.
Methods Mol Biol. 2013;1055:117-27. doi: 10.1007/978-1-62703-577-4_9.
8
Molecular characterization of zebrafish embryogenesis via DNA microarrays and multiplatform time course metabolomics studies.
J Proteome Res. 2011 Nov 4;10(11):5102-17. doi: 10.1021/pr2005549. Epub 2011 Sep 30.
10
Metabolomic signature of brain cancer.
Mol Carcinog. 2017 Nov;56(11):2355-2371. doi: 10.1002/mc.22694. Epub 2017 Jul 17.

引用本文的文献

1
Metabolomics as a tool for understanding and treating triple-negative breast cancer.
Naunyn Schmiedebergs Arch Pharmacol. 2025 May 2. doi: 10.1007/s00210-025-04234-4.

本文引用的文献

1
Metabolism links bacterial biofilms and colon carcinogenesis.
Cell Metab. 2015 Jun 2;21(6):891-7. doi: 10.1016/j.cmet.2015.04.011. Epub 2015 May 7.
2
Exploring Metabolic Profile Differences between Colorectal Polyp Patients and Controls Using Seemingly Unrelated Regression.
J Proteome Res. 2015 Jun 5;14(6):2492-9. doi: 10.1021/acs.jproteome.5b00059. Epub 2015 May 13.
3
Kernel approaches for differential expression analysis of mass spectrometry-based metabolomics data.
BMC Bioinformatics. 2015 Mar 11;16:77. doi: 10.1186/s12859-015-0506-3.
5
Determination of urinary 5-hydroxyindoleacetic acid as a metabolomics in gastric cancer.
J Gastrointest Cancer. 2015 Jun;46(2):138-42. doi: 10.1007/s12029-015-9700-9.
7
Glycosylation characteristics of colorectal cancer.
Adv Cancer Res. 2015;126:203-56. doi: 10.1016/bs.acr.2014.11.004. Epub 2015 Feb 7.
8
Application of metabolomics in drug resistant breast cancer research.
Metabolites. 2015 Feb 16;5(1):100-18. doi: 10.3390/metabo5010100.
10
A metabolic signature of colon cancer initiating cells.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4759-62. doi: 10.1109/EMBC.2014.6944688.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验