Suppr超能文献

使用电子能量损失谱观察金纳米结构中由于粘附层导致的等离子体阻尼。

Observing Plasmon Damping Due to Adhesion Layers in Gold Nanostructures Using Electron Energy Loss Spectroscopy.

作者信息

Madsen Steven J, Esfandyarpour Majid, Brongersma Mark L, Sinclair Robert

机构信息

Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-4034 USA.

Geballe Laboratory for Advanced Materials, 476 Lomita Mall, Stanford, California 94305-4045, United States.

出版信息

ACS Photonics. 2017 Feb 15;4(2):268-274. doi: 10.1021/acsphotonics.6b00525. Epub 2017 Jan 13.

Abstract

Gold plasmonic nanostructures with several different adhesion layers have been studied with monochromated electron energy loss spectroscopy in the scanning transmission electron microscope (STEM-EELS) and with surface enhanced Raman spectroscopy (SERS). Compared to samples with no adhesion layer, those with 2nm of Cr or Ti show broadened, lower intensity plasmon peaks as measured with EELS. This broadening is observed in both optically active ("bright") and inactive ("dark") plasmon modes. When the former are probed with SERS, the signal enhancement factor is lower for samples with Cr or Ti, another indication of reduced plasmon resonance. This work illustrates the capability of STEM-EELS to provide direct near-field measurement of changes in plasmon excitation probability with nano-scale spatial resolution. Additionally, it demonstrates that applications which require high SERS enhancement, such as biomarker detection and cancer diagnostics, can be improved by avoiding the use of a metallic adhesion layer.

摘要

利用扫描透射电子显微镜中的单色电子能量损失谱(STEM-EELS)以及表面增强拉曼光谱(SERS),对具有几种不同粘附层的金等离子体纳米结构进行了研究。与没有粘附层的样品相比,具有2nm铬或钛粘附层的样品,通过EELS测量显示出等离子体峰变宽且强度降低。在光学活性(“明亮”)和非活性(“黑暗”)等离子体模式中均观察到这种展宽现象。当用SERS探测前者时,具有铬或钛的样品的信号增强因子较低,这是等离子体共振降低的另一个迹象。这项工作说明了STEM-EELS能够以纳米级空间分辨率提供等离子体激发概率变化的直接近场测量。此外,它表明,通过避免使用金属粘附层,可以改善诸如生物标志物检测和癌症诊断等需要高SERS增强的应用。

相似文献

4
Probing Nanoparticle Plasmons with Electron Energy Loss Spectroscopy.用电子能量损失谱探测纳米粒子等离子体激元
Chem Rev. 2018 Mar 28;118(6):2994-3031. doi: 10.1021/acs.chemrev.7b00354. Epub 2017 Dec 7.
8
Ultrasmall Designed Plasmon Resonators by Fused Colloidal Nanopatterning.熔融胶体纳米图案化的超小设计等离子体共振器。
ACS Appl Mater Interfaces. 2019 Dec 4;11(48):45207-45213. doi: 10.1021/acsami.9b15780. Epub 2019 Nov 19.
10
Tailored Nanoscale Plasmon-Enhanced Vibrational Electron Spectroscopy.定制纳米级等离子体增强振动电子光谱学。
Nano Lett. 2020 May 13;20(5):2973-2979. doi: 10.1021/acs.nanolett.9b04659. Epub 2020 Feb 11.

引用本文的文献

3
Plasmonic nanomaterial structuring for SERS enhancement.用于表面增强拉曼散射增强的等离激元纳米材料结构
RSC Adv. 2019 Feb 8;9(9):4982-4992. doi: 10.1039/c8ra10656h. eCollection 2019 Feb 5.

本文引用的文献

3
Surface-enhanced Raman scattering in cancer detection and imaging.表面增强拉曼散射在癌症检测和成像中的应用。
Trends Biotechnol. 2013 Apr;31(4):249-57. doi: 10.1016/j.tibtech.2013.01.013. Epub 2013 Feb 15.
4
Dark plasmonic breathing modes in silver nanodisks.银纳米盘中的暗等离子体呼吸模式。
Nano Lett. 2012 Nov 14;12(11):5780-3. doi: 10.1021/nl3030938. Epub 2012 Oct 3.
7
Nanoplasmonics: classical down to the nanometer scale.纳米等离子体学:经典到纳米尺度。
Nano Lett. 2012 Mar 14;12(3):1683-9. doi: 10.1021/nl3001309. Epub 2012 Feb 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验