Suppr超能文献

基于分水岭和相对模糊连通性的脑 MRI 缺血性脑卒中病灶描绘。

Delineation of the ischemic stroke lesion based on watershed and relative fuzzy connectedness in brain MRI.

机构信息

Department of Electronics and Communication Engineering, ITER, SOA University, Bhubaneswar, Odisha, India.

Department of Neurology, All India Institutes of Medical Sciences, Bhubaneswar, Odisha, India.

出版信息

Med Biol Eng Comput. 2018 May;56(5):795-807. doi: 10.1007/s11517-017-1726-7. Epub 2017 Sep 26.

Abstract

Precise segmentation of stroke lesions from brain magnetic resonance (MR) images poses a challenging task in automated diagnosis. In this paper, we proposed a new method called watershed-based lesion segmentation algorithm (WLSA), which is a novel intensity-based segmentation technique used to delineate infarct lesion in diffusion-weighted imaging (DWI) MR images of the brain. The algorithm was tested on a series of 142 real-time images collected from different stroke patients reported at IMS and SUM Hospital. One MRI slice having largest area of infract lesion is selected from each patient from multiple slices. The main objective is to combine the strength of guided filter and watershed transform through relative fuzzy connectedness (RFC) to detect lesion boundaries appropriately. The extracted informative statistical and geometrical features are used to classify the types of stroke lesions according to the Oxfordshire Community Stroke Project (OCSP) classification. The experimental results demonstrated the effectiveness of the proposed process with high accuracy in delineating lesions. A classification with a dice similarity index (DSI) of 96% with computational time of 0.06 s in random forest (RF) and an accuracy of 85% with computational time of 0.84 s has been obtained by multilayer perceptron (MLP) neural network classifier in tenfold cross-validation process. Better detection accuracy is achieved in RF classifier in classifying stroke lesions.

摘要

从脑部磁共振(MR)图像中精确分割中风病灶是自动化诊断中的一项具有挑战性的任务。在本文中,我们提出了一种新的方法,称为基于分水岭的病灶分割算法(WLSA),这是一种新颖的基于强度的分割技术,用于描绘脑部弥散加权成像(DWI)MR 图像中的梗塞病灶。该算法在从 IMS 和 SUM 医院报告的不同中风患者收集的一系列 142 张实时图像上进行了测试。从每位患者的多个切片中选择具有最大梗塞病灶面积的一张 MRI 切片。主要目标是通过相对模糊连接(RFC)将引导滤波器和分水岭变换的优势相结合,以适当检测病灶边界。提取的信息统计和几何特征用于根据牛津社区中风项目(OCSP)分类对中风病灶的类型进行分类。实验结果表明,该方法在描绘病灶方面具有较高的准确性。在十折交叉验证过程中,随机森林(RF)的骰子相似性指数(DSI)为 96%,计算时间为 0.06s,多层感知机(MLP)神经网络分类器的准确率为 85%,计算时间为 0.84s。RF 分类器在分类中风病灶方面具有更好的检测精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验