Daniel Scott G, Ball Corbie L, Besselsen David G, Doetschman Tom, Hurwitz Bonnie L
Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA.
The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA.
mSystems. 2017 Sep 26;2(5). doi: 10.1128/mSystems.00065-17. eCollection 2017 Sep-Oct.
Colorectal cancer (CRC) is one of the most treatable cancers, with a 5-year survival rate of ~64%, yet over 50,000 deaths occur yearly in the United States. In 15% of cases, deficiency in mismatch repair leads to null mutations in transforming growth factor β (TGF-β) type II receptor, yet genotype alone is not responsible for tumorigenesis. Previous work in mice shows that disruptions in TGF-β signaling combined with cause tumorigenesis, indicating a synergistic effect between genotype and microbial environment. Here, we examine functional shifts in the gut microbiome in CRC using integrated -omics approaches to untangle the role of host genotype, inflammation, and microbial ecology. We profile the gut microbiome of 40 mice with/without deficiency in TGF-β signaling from a (mothers against decapentaplegic homolog-3) knockout and with/without inoculation with . Clear functional differences in the microbiome tied to specific bacterial species emerge from four pathways related to human colon cancer: lipopolysaccharide (LPS) production, polyamine synthesis, butyrate metabolism, and oxidative phosphorylation (OXPHOS). Specifically, an increase in drives LPS production, which is associated with an inflammatory response. We observe a commensurate decrease in butyrate production from bacterium A4, which could promote tumor formation. causes an increase in OXPHOS that may increase DNA-damaging free radicals. Finally, multiple bacterial species increase polyamines that are associated with colon cancer, implicating not just diet but also the microbiome in polyamine levels. These insights into cross talk between the microbiome, host genotype, and inflammation could promote the development of diagnostics and therapies for CRC. Most research on the gut microbiome in colon cancer focuses on taxonomic changes at the genus level using 16S rRNA gene sequencing. Here, we develop a new methodology to integrate DNA and RNA data sets to examine functional shifts at the species level that are important to tumor development. We uncover several metabolic pathways in the microbiome that, when perturbed by host genetics and inoculation, contribute to colon cancer. The work presented here lays a foundation for improved bioinformatics methodologies to closely examine the cross talk between specific organisms and the host, important for the development of diagnostics and pre/probiotic treatment.
结直肠癌(CRC)是最可治愈的癌症之一,5年生存率约为64%,但在美国每年仍有超过50000人死亡。在15%的病例中,错配修复缺陷会导致转化生长因子β(TGF-β)II型受体的无效突变,但肿瘤发生并非仅由基因型决定。此前在小鼠身上的研究表明,TGF-β信号通路的破坏与[具体因素未提及]相结合会引发肿瘤发生,这表明基因型与微生物环境之间存在协同效应。在这里,我们使用综合组学方法研究CRC中肠道微生物群的功能变化,以理清宿主基因型、炎症和微生物生态学的作用。我们分析了40只小鼠的肠道微生物群,这些小鼠来自[具体品系未提及](母亲抗脱轨蛋白同源物3)敲除且有/无TGF-β信号缺陷,以及有/无接种[具体物质未提及]。与人类结肠癌相关的四条途径中出现了与特定细菌种类相关的微生物群明显功能差异:脂多糖(LPS)产生、多胺合成、丁酸代谢和氧化磷酸化(OXPHOS)。具体而言,[具体细菌未提及]的增加会驱动LPS产生,这与炎症反应相关。我们观察到来自A4细菌的丁酸产生相应减少,这可能促进肿瘤形成。[具体细菌未提及]会导致OXPHOS增加,这可能会增加DNA损伤自由基。最后,多种细菌种类会增加与结肠癌相关的多胺,这表明不仅饮食,微生物群也与多胺水平有关。这些对微生物群、宿主基因型和炎症之间相互作用的见解可能会促进CRC诊断和治疗方法的发展。大多数关于结肠癌中肠道微生物群的研究使用16S rRNA基因测序关注属水平的分类变化。在这里,我们开发了一种新方法来整合DNA和RNA数据集,以研究对肿瘤发展重要的物种水平的功能变化。我们发现微生物群中的几种代谢途径,当受到宿主遗传学和[具体接种物质未提及]接种的干扰时,会促进结肠癌。这里展示的工作为改进生物信息学方法奠定了基础,以便密切研究特定生物体与宿主之间的相互作用,这对诊断和前体/益生菌治疗的发展很重要。