Suppr超能文献

使用神经形态听觉传感器的深度学习神经网络对心脏杂音的识别和分类。

Deep Neural Networks for the Recognition and Classification of Heart Murmurs Using Neuromorphic Auditory Sensors.

出版信息

IEEE Trans Biomed Circuits Syst. 2018 Feb;12(1):24-34. doi: 10.1109/TBCAS.2017.2751545. Epub 2017 Sep 22.

Abstract

Auscultation is one of the most used techniques for detecting cardiovascular diseases, which is one of the main causes of death in the world. Heart murmurs are the most common abnormal finding when a patient visits the physician for auscultation. These heart sounds can either be innocent, which are harmless, or abnormal, which may be a sign of a more serious heart condition. However, the accuracy rate of primary care physicians and expert cardiologists when auscultating is not good enough to avoid most of both type-I (healthy patients are sent for echocardiogram) and type-II (pathological patients are sent home without medication or treatment) errors made. In this paper, the authors present a novel convolutional neural network based tool for classifying between healthy people and pathological patients using a neuromorphic auditory sensor for FPGA that is able to decompose the audio into frequency bands in real time. For this purpose, different networks have been trained with the heart murmur information contained in heart sound recordings obtained from nine different heart sound databases sourced from multiple research groups. These samples are segmented and preprocessed using the neuromorphic auditory sensor to decompose their audio information into frequency bands and, after that, sonogram images with the same size are generated. These images have been used to train and test different convolutional neural network architectures. The best results have been obtained with a modified version of the AlexNet model, achieving 97% accuracy (specificity: 95.12%, sensitivity: 93.20%, PhysioNet/CinC Challenge 2016 score: 0.9416). This tool could aid cardiologists and primary care physicians in the auscultation process, improving the decision making task and reducing type-I and type-II errors.

摘要

听诊是检测心血管疾病的最常用技术之一,心血管疾病是世界上主要的死亡原因之一。当患者因听诊就诊时,心脏杂音是最常见的异常发现。这些心音要么是无害的良性杂音,要么是更严重心脏状况的异常杂音。然而,初级保健医生和专家心脏病专家听诊的准确率还不够高,无法避免大多数 I 型(健康患者被转介进行超声心动图检查)和 II 型(有病理的患者未接受药物或治疗而被遣返)错误。在本文中,作者提出了一种新颖的基于卷积神经网络的工具,该工具使用能够实时将音频分解为频带的神经形态听觉传感器对健康人与病理患者进行分类。为此,使用来自多个研究小组的九个不同心音数据库中获取的心音记录中的心脏杂音信息对不同网络进行了训练。使用神经形态听觉传感器对这些样本进行分段和预处理,将其音频信息分解为频带,然后生成具有相同大小的声谱图图像。这些图像已用于训练和测试不同的卷积神经网络架构。使用 AlexNet 模型的修改版本获得了最佳结果,准确率达到 97%(特异性:95.12%,敏感性:93.20%,PhysioNet/CinC 挑战赛 2016 得分:0.9416)。该工具可以帮助心脏病专家和初级保健医生进行听诊过程,提高决策任务的准确性,并减少 I 型和 II 型错误。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验