Suppr超能文献

用于挖掘新冠病毒感染数据的多源智能计算机辅助系统

Multisource Smart Computer-Aided System for Mining COVID-19 Infection Data.

作者信息

Abou-Kreisha Mohammad T, Yaseen Humam K, Fathy Khaled A, Ebeid Ebeid A, ElDahshan Kamal A

机构信息

Mathematics Department, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt.

出版信息

Healthcare (Basel). 2022 Jan 6;10(1):109. doi: 10.3390/healthcare10010109.

Abstract

In this paper, we approach the problem of detecting and diagnosing COVID-19 infections using multisource scan images including CT and X-ray scans to assist the healthcare system during the COVID-19 pandemic. Here, a computer-aided diagnosis (CAD) system is proposed that utilizes analysis of the CT or X-ray to diagnose the impact of damage in the respiratory system per infected case. The CAD was utilized and optimized by hyper-parameters for shallow learning, e.g., SVM and deep learning. For the deep learning, mini-batch stochastic gradient descent was used to overcome fitting problems during transfer learning. The optimal parameter list values were found using the naïve Bayes technique. Our contributions are (i) a comparison among the detection rates of pre-trained CNN models, (ii) a suggested hybrid deep learning with shallow machine learning, (iii) an extensive analysis of the results of COVID-19 transition and informative conclusions through developing various transfer techniques, and (iv) a comparison of the accuracy of the previous models with the systems of the present study. The effectiveness of the proposed CAD is demonstrated using three datasets, either using an intense learning model as a fully end-to-end solution or using a hybrid deep learning model. Six experiments were designed to illustrate the superior performance of our suggested CAD when compared to other similar approaches. Our system achieves 99.94, 99.6, 100, 97.41, 99.23, and 98.94 accuracy for binary and three-class labels for the CT and two CXR datasets.

摘要

在本文中,我们探讨了利用包括CT和X光扫描在内的多源扫描图像来检测和诊断COVID-19感染的问题,以在COVID-19大流行期间协助医疗系统。在此,提出了一种计算机辅助诊断(CAD)系统,该系统利用对CT或X光的分析来诊断每个感染病例中呼吸系统损伤的影响。该CAD通过用于浅层学习(如支持向量机)和深度学习的超参数进行了利用和优化。对于深度学习,使用小批量随机梯度下降来克服迁移学习过程中的拟合问题。使用朴素贝叶斯技术找到了最优参数列表值。我们的贡献包括:(i)对预训练的卷积神经网络(CNN)模型的检测率进行比较;(ii)建议将深度机器学习与浅层机器学习相结合;(iii)通过开发各种迁移技术对COVID-19转变结果进行广泛分析并得出信息丰富的结论;(iv)将先前模型的准确性与本研究的系统进行比较。使用三个数据集证明了所提出的CAD的有效性,既可以使用强化学习模型作为完全端到端的解决方案,也可以使用混合深度学习模型。设计了六个实验来说明我们建议的CAD与其他类似方法相比的卓越性能。对于CT和两个胸部X光(CXR)数据集的二元和三类标签,我们的系统分别实现了99.94、99.6、100、97.41、99.23和98.94的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8eb/8775247/70078476c60f/healthcare-10-00109-g001.jpg

相似文献

本文引用的文献

6
Deep Learning Enables Accurate Diagnosis of Novel Coronavirus (COVID-19) With CT Images.深度学习利用 CT 图像准确诊断新型冠状病毒(COVID-19)。
IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2775-2780. doi: 10.1109/TCBB.2021.3065361. Epub 2021 Dec 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验