Sommer Christoph, Hoefler Rudolf, Samwer Matthias, Gerlich Daniel W
Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria.
Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
Mol Biol Cell. 2017 Nov 7;28(23):3428-3436. doi: 10.1091/mbc.E17-05-0333. Epub 2017 Sep 27.
Supervised machine learning is a powerful and widely used method for analyzing high-content screening data. Despite its accuracy, efficiency, and versatility, supervised machine learning has drawbacks, most notably its dependence on a priori knowledge of expected phenotypes and time-consuming classifier training. We provide a solution to these limitations with , a generic novelty detection and deep learning framework. Application to several large-scale screening data sets on nuclear and mitotic cell morphologies demonstrates that enables discovery of rare phenotypes without user training, which has broad implications for improved assay development in high-content screening.
监督式机器学习是一种用于分析高内涵筛选数据的强大且广泛使用的方法。尽管它具有准确性、高效性和通用性,但监督式机器学习也有缺点,最显著的是它依赖于预期表型的先验知识以及耗时的分类器训练。我们通过一种通用的新颖性检测和深度学习框架为这些局限性提供了一个解决方案。将其应用于几个关于细胞核和有丝分裂细胞形态的大规模筛选数据集表明,该框架能够在无需用户训练的情况下发现罕见表型,这对改进高内涵筛选中的检测方法开发具有广泛的意义。